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Abstract: Image segmentation is a fundamental challenge in computer vision, transforming
complex image representations into meaningful, analyzable components. While entropy-
based multilevel thresholding techniques, including Otsu, Shannon, fuzzy, Tsallis, Renyi,
and Kapur approaches, have shown potential in image segmentation, they encounter
significant limitations when processing thermal images, such as poor spatial resolution,
low contrast, lack of color and texture information, and susceptibility to noise and back-
ground clutter. This paper introduces a novel adaptive unsupervised entropy algorithm
(A-Entropy) to enhance multilevel thresholding for thermal image segmentation. Our
key contributions include (i) an image-dependent thermal enhancement technique specif-
ically designed for thermal images to improve visibility and contrast in regions of inter-
est, (ii) a so-called A-Entropy concept for unsupervised thermal image thresholding, and
(iii) a comprehensive evaluation using the Benchmarking IR Dataset for Surveillance with
Aerial Intelligence (BIRDSAI). Experimental results demonstrate the superiority of our
proposal compared to other state-of-the-art methods on the BIRDSAI dataset, which com-
prises both real and synthetic thermal images with substantial variations in scale, contrast,
background clutter, and noise. Comparative analysis indicates improved segmentation
accuracy and robustness compared to traditional entropy-based methods. The framework’s
versatility suggests promising applications in brain tumor detection, optical character
recognition, thermal energy leakage detection, and face recognition.

Keywords: entropy; thermal images; segmentation

1. Introduction

Entropy, a concept introduced by Clausius in 1865 to quantify unusable energy in ther-
modynamic systems, has since become a cornerstone of modern science. Boltzmann, Gibbs,
and others later provided an atomic interpretation of entropy within statistical mechanics
and gas dynamics, establishing its foundational role in describing non-equilibrium pro-
cesses through the second law of thermodynamics and the principle of maximum entropy
production. In the mid-20th century, Claude E. Shannon redefined entropy as a measure of
uncertainty or randomness in datasets, laying the groundwork for its application in infor-
mation theory. Today, entropy and entropic forces are integral to innovative approaches in
artificial intelligence and the study of collective behavior, underscoring their significance
across diverse scientific disciplines.
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Entropy has become a powerful tool for quantifying an image’s complexity in image
processing. It is widely employed in compression, segmentation, quality assessment, and
feature extraction tasks. A high entropy value generally indicates a complex image featuring
a broad range of pixel values, while a low entropy value implies a more straightforward,
more uniform image [1]. For example, entropy analysis can assess an image’s complexity
to assist in identifying the best compression method without substantial information
loss [2]. By quantifying the randomness or uncertainty in pixel values, entropy provides
insights into the quantity of redundant or compressible information in an image, facilitating
efficient data storage and transmission [3]. Likewise, entropy plays a role in image quality
assessment and feature extraction. High entropy values often indicate more detailed
and complex images, which are typically richer in information [4,5]. This property makes
entropy a valuable metric for assessing image quality, as higher entropy generally correlates
with greater detail and visual complexity. In feature extraction, entropy helps identify
information-rich areas within an image. Regions with high entropy are often prioritized for
further analysis because they likely contain significant features or patterns of interest [6,7].
This capability is beneficial in applications like object detection, segmentation, and pattern
recognition, where it is crucial to distinguish meaningful regions from the background [8].

This paper focuses on applying entropy-based techniques to image segmentation,
particularly in identifying illegal activities from images captured by thermal infrared
(TIR) cameras in challenging environments [9-11]. Monitoring protected areas to reduce
illegal activities, like poaching and wildlife trafficking, poses a significant and complex
challenge [12]. These activities threaten biodiversity and disrupt the ecological balance,
undermining global conservation efforts. Effective management and surveillance require
advanced technologies, such as remote sensing, drones, and artificial intelligence (AI),
to enhance the detection, prevention, and response to these threats [13,14]. Addressing
these issues is crucial for ensuring the long-term conservation of biodiversity and the
sustainability of ecosystems.

Recent advancements in aerial imaging technologies have resulted in widespread use
of satellite and Unmanned Aerial Vehicle (UAV)-based data for various applications, such
as surveillance and monitoring. Nevertheless, imagery captured in the visible spectrum
often faces limitations in low-light environments or adverse weather conditions [15,16].
The growing interest in using sensors in the near-infrared (NIR) and thermal infrared (TIR)
spectrums, driven by significant cost reductions, has enabled improved detection and track-
ing capabilities in more challenging environments. This advancement marks a significant
step forward in enhancing surveillance and management of protected areas [17,18].

Detecting illegal activities from TIR images in challenging environments requires an
efficient digital signal processing framework, especially using segmentation techniques.
These methods aid in differentiating and identifying suspicious objects against the terrain
in the captured imagery [19]. This segmentation is essential for identifying illegal activities,
such as human movement in forested areas or the use of hunting tools [20]. Using digital
signal processing for segmentation makes it possible to enhance the detection and tracking
of these activities, reducing the image analysis’s complexity. Furthermore, this approach
boosts the operational efficiency of law enforcement by speeding up the response time to
potential threats or illegal actions [21,22].

Segmentation primarily focuses on isolating regions of interest, such as heat signatures
from humans or animals, which may indicate illegal activities like poaching or logging. The
goal is to differentiate these heat sources from the background, which typically represents
the natural environment or terrain. One commonly used method for image segmentation is
thresholding, where pixel values are categorized into distinct segments based on a prede-
fined threshold. However, identifying the optimal threshold can be challenging, especially
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without prior knowledge of the image’s content. Various extensions of entropy, including
Boltzmann-Gibbs, Tsallis, Renyi, Kapur, and Masi entropies, have been developed and em-
ployed for image segmentation [1,23-32]. These entropy measures offer unique advantages
and disadvantages [32-35].

In 1985, Kapur introduced entropy [29] as a popular method for image segmentation.
However, it has several limitations: (i) Sensitivity to noise, particularly in low-contrast or
noisy images [36]. TIR (thermal infrared) images, which often contain thermal noise or
artifacts, can produce inaccurate entropy calculations, resulting in suboptimal thresholding
and poor segmentation performance. (ii) The assumption of a bimodal distribution of pixel
intensities, meaning it is most effective when the image can be divided into two distinct
regions (e.g., foreground and background). However, the method may struggle to generate
accurate thresholds in complex images with multi-modal intensity distributions, such as
those featuring varying heat sources or cluttered backgrounds [37]. (iii) Computational
complexity. Calculating the entropy for each potential threshold value requires evaluating
the distribution of pixel intensities across multiple segments, which can be computationally
demanding, especially for large images or real-time applications. This may limit the
scalability and efficiency of Kapur entropy in large-scale surveillance systems or scenarios
that need rapid processing [38]. (iv) Limited contextual awareness. The method considers
only the statistical distribution of pixel intensities without incorporating spatial information
or contextual relationships between pixels, potentially missing critical structural details in
the image. (v) Parameter sensitivity. The effectiveness of entropy-based methods can be
highly dependent on parameter selection, requiring careful tuning for optimal performance
across different imaging conditions [39].

Moreover, Kapur’s entropy significantly relies on the assumption that the background
and foreground can be separated solely based on intensity differences. In some cases, the
thermal signatures of objects may overlap with the background, particularly in dynamic
environments or under varying thermal conditions, which can diminish the effectiveness
of segmentation. A key limitation of Kapur entropy for segmentation is that it often
necessitates preprocessing steps, such as image enhancement, to improve its effectiveness.
Since Kapur entropy is grounded in intensity thresholding, it assumes that the regions
of interest (like the heat signatures of humans or animals) are distinguishable from the
background due to their thermal characteristics. However, TIR images may frequently
suffer from low contrast or poor visibility due to environmental noise, fluctuating thermal
conditions, or similar temperature values in the foreground and background.

To address these challenges, this paper proposes a novel entropy-based multilevel
thresholding approach for improved thermal image segmentation. The proposed method
is evaluated on the BIRDSAI datasets [40], benchmarking the automatic detection and
tracking of humans and animals in both real and synthetic videos. The key contributions of
this work are as follows:

e Image enhancement techniques specifically designed for TIR images improve visibility
and contrast in regions of interest. These methods emphasize the thermal signatures
of objects, such as humans or animals, making them more distinguishable from the
background. This step is essential for enhancing the performance of subsequent
segmentation processes.

e Aninnovative entropy-based segmentation technique tailored for TIR images is pre-
sented. The proposed method employs advanced entropy measures to determine the
optimal multilevel threshold, enabling more precise separation of foreground and
background regions, even in challenging, low-contrast TIR images.

Through these contributions, we aim to enhance the detection and monitoring of
illegal activities in natural environments using TIR imaging, thereby supporting global
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conservation efforts. The remainder of this paper is structured as follows: Section 2
provides a comprehensive overview of entropy-based segmentation techniques. Section 3
presents the proposed methodology, including image enhancement techniques for TIR
images and the innovative entropy-based segmentation approach. Section 4 showcases the
results of computer simulations, followed by a discussion of the findings. Finally, Section 5
concludes the paper with a summary of the contributions and suggests potential directions
for future research.

2. Background

Image segmentation is a fundamental task in computer vision and image processing,
enabling the extraction of meaningful regions of interest (ROIs) from complex visual
data. Among the various segmentation techniques, entropy-based methods have gained
prominence for their ability to quantify uncertainty and randomness in pixel intensity
distributions, making them especially effective for thresholding applications. This section
reviews key entropy formulations and their roles in segmentation, focusing on thermal
infrared (TIR) imaging, where isolating heat signatures from noisy backgrounds remains a
significant challenge. In this paper, we define the ROIs within a thermal image (X, ) as
the set of pixels that meet a predefined entropy-based thresholding criterion (T):

Q= {(a,0)|Xep > To}, 1)
where Ty is the optimal threshold, as defined in Section 2.2.

2.1. Entropy in Image Segmentation

Entropy, which comes from information theory, measures the unpredictability or
dispersion of data. In imaging, it quantifies the variability in pixel intensities, with higher
entropy values indicating greater randomness. Several formulations of entropy have been
adapted for segmentation:

H(x) = =) . p(xi)log(p(xi)), @)

where p(x;) is the probability of intensity x;. It underpins thresholding techniques by
maximizing the total entropy of segmented regions (e.g., foreground vs. background).
While effective for basic segmentation, Shannon entropy assumes separable intensity
distributions and struggles with multi-modal or noisy data.

Tsallis Entropy: A generalization of Boltzmann—Gibbs entropy [41], Tsallis entropy [42]
introduces a non-extensive parameter, 4. This parameter enables tuning for sensitivity to
multi-modal distributions, making it suitable for complex images. However, its perfor-
mance hinges on the careful selection of 4.

Hx) = =5 (1= L () @)

Renyi Entropy: it extends Shannon entropy with a parameter @ « to emphasize
sparsity or concentration [43]:

H(x) = - (log(¥, p*(x1))) @

While adaptable to subtle intensity variations, its computational complexity limits scalability.
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1

Ho(x) = 1—

Kapur Entropy: it optimizes thresholding for bimodal histograms by splitting intensi-
ties into the foreground (Hy) and background (Hy) [4]:

o)=L (P, o= £, g (),

where Py and P; are cumulative probabilities. Despite its simplicity, Kapur entropy is
sensitive to noise and fails for multi-modal or overlapping distributions.
Masi Entropy: it introduces a flexibility parameter, 7, to handle complex distributions [44]:

log|1—(1—7) iT:O p(x»log(p(xi))}and Hy(x) = ! log|1—(1 —r)Z.L:l p(xi)log<p(xi)>] (6)

Py Py 1—r =T p P

Though promising for diverse intensity profiles, its real-time applicability remains underexplored.

2.2. Thresholding Techniques and Challenges

Multilevel thresholding techniques have been widely studied using entropy-based
methods, such as Shannon, Kapur, and Tsallis entropy. These approaches leverage statisti-
cal information to determine optimal threshold values for segmentation. Meta-heuristic
optimization techniques like Genetic Algorithms (GAs) and Particle Swarm Optimization
(PSO) strive to find optimal or near-optimal solutions to complex optimization problems
where traditional methods may fall short as shown in Table 1. For threshold selection
specifically, these techniques have the following objectives:

o  Identify optimal threshold values that maximize segmentation accuracy;

e  Decrease computational complexity compared to exhaustive search methods;

e  Prevent getting trapped in local optima in a complex fitness landscape;

e  Address multi-dimensional optimization problems involving multiple thresholds.

Application to Threshold Selection: For threshold selection in image segmentation or
signal processing, these meta-heuristics can automatically determine optimal thresholds
without an exhaustive search; adapt to different image characteristics and noise conditions;
optimize multiple criteria simultaneously (e.g., between-class variance and entropy); and
scale to multilevel thresholding problems more efficiently than traditional methods. Both
the GA and PSO have proven effective for threshold selection, with the choice between them
typically depending on the specific application constraints, the computational resources
available, and the complexity of the fitness landscape. However, recent advancements have
leveraged meta-heuristic optimization techniques such as the Genetic Algorithm (GA) [45]
and Particle Swarm Optimization (PSO) [46] to enhance threshold selection efficiency [47].
These methods iteratively refine threshold positions using evolutionary strategies, of-
ten resulting in improved segmentation accuracy. However, their computational cost is
significantly higher than that of entropy-based methods.

Table 1. Comparison of meta-heuristic optimization techniques for threshold selection.

Aspect

Genetic Algorithm (GA) [45] Particle Swarm Optimization (PSO) [46]

Common Goals

Find optimal threshold values.
Reduce computational complexity.
Avoid local optima. Prevent local optima.
Handle multi-dimensional Address multi-dimensional
threshold problems. threshold issues.

Identify optimal threshold values.
Minimize computational complexity.




No guarantee of global optimum. with dimensionality.
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Table 1. Cont.
Aspect Genetic Algorithm (GA) [45] Particle Swarm Optimization (PSO) [46]
Inspiration e  Natural selection and genetic evolution. * Spc1a1 behe}Vlor of bird flocking or
fish schooling.
Excellent at exploring large search spaces. e  Simpler implementation.
Handles non-linear, ° Fewer parameters to tune.
Ad non-differentiable problems. e  Faster convergence for many problems.
vantages Maintains population diversity. e  Efficiently handles
Easily parallelizable. continuous optimization.
Effective for multi-threshold problems. ° Less sensitive to initialization.
e  Requires careful parameter tuning. Prone to premature convergence.
e Convergence can be slow. Less effective at full space exploration.
Disadvantages e  Computationally intensive. Performance degrades
°
[ )

More easily trapped in local optima.

Performance depends on fitness function. ! . I
Still requires parameter selection.

Key Parameters

° Population size, mutation rate, crossover o Inertia weight, cognitive/social

rate, selection method acceleration coefficients, swarm size
L . Well suited for complex ° Efficient for continuous
Apphcatlon to ThreShOIdmg multilevel thresholding. threshold optimization.

2.2.1. Bilevel vs. Multilevel Thresholding

Bilevel thresholding partitions an image into two classes (e.g., object and back-
ground) by optimizing entropy at a single threshold. For multilevel thresholding, the
intensity histogram is divided into n intervals using thresholds Ty, Ty, . . ., T;;, maximizing
the joint entropy:

Te = argmax (Ho+Hy+...+ Hy), (7)
0<T;<..<Ty<L-1
while multilevel approaches better handle complex images, the computational complexity
escalates exponentially, posing a significant optimization challenge.

2.2.2. Limitations in Thermal Infrared (TIR) Imaging

Thermal infrared imaging is crucial for applications such as surveillance, medical
diagnostics, and environmental monitoring, where isolating heat signatures from cluttered
backgrounds is essential. However, TIR images inherently exhibit low contrast, thermal
noise, and overlapping intensity profiles between foreground objects (e.g., humans and
machinery) and backgrounds. These challenges complicate segmentation, as traditional
intensity-based methods often struggle to distinguish regions of interest (ROIs) under
such conditions. Kapur entropy, a widely used method for thresholding, maximizes the
entropy of segmented regions to identify an optimal threshold. Applying entropy to bilevel
thresholding involves selecting a threshold that maximizes the entropy of segmented
regions. While effective for simple cases, bilevel thresholding is limited when handling
images with multiple regions of interest.

To address the limitations of bilevel thresholding in complex TIR images, multilevel
thresholding partitions the intensity of the histogram into multiple intervals, each repre-
senting a distinct region (e.g., background, human, and machinery). Advanced entropy
measures, including Tsallis and Renyi, are employed to optimize thresholds. For Kapur
entropy, the multilevel extension is defined as

T X;
Hiotal = ) oo He 5 He=-)_ 5% log<’”§3k’)), ®)
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where Py denotes the cumulative probability of the k-th class.

While this approach enhances the segmentation of multi-modal TIR data, the inherent
limitations of Kapur entropy, including noise sensitivity and computational cost, persist,
particularly as the number of thresholds increases. Additionally, Kapur’s entropy relies
heavily on the assumption that the background and foreground can be separated solely
based on intensity differences. In specific scenarios, the thermal signatures of objects may
overlap with the background, particularly in dynamic environments or under varying ther-
mal conditions, which can diminish the effectiveness of segmentation. A notable limitation
of Kapur entropy for segmentation is its frequent requirement for preprocessing steps,
such as image enhancement, to boost its effectiveness. Since Kapur entropy depends on
intensity-based thresholding, it assumes that regions of interest (such as the heat signatures
of humans or animals) are distinguishable from the background based on their thermal
characteristics. However, TIR images may encounter low contrast or poor visibility in
many situations due to environmental noise, varying thermal conditions, or comparable
temperature values in the foreground and background.

To address the issues mentioned, image enhancement techniques are often necessary
to highlight the region of interest and improve the contrast between foreground objects and
the background. Without such preprocessing, the Kapur entropy method may struggle to
accurately determine an optimal threshold, leading to suboptimal segmentation outcomes.
Therefore, image enhancement techniques like contrast adjustment, noise reduction, or
filtering are crucial to ensuring that the segmentation process based on Kapur entropy
produces reliable and meaningful results.

2.3. A-Entropy

As mentioned above, entropy is widely used to measure uncertainty or information
content in image processing. Shannon entropy is a fundamental concept in information
theory that quantifies uncertainty or randomness in a system, providing a measure of a
source’s information content. Shannon entropy has extensive data compression, communi-
cation systems, and image processing applications. Shannon entropy (H;) for a discrete
random variable i with possible outcomes {i1, i, .., i, } and corresponding probabilities p;
is given by

Hy ==Y " pilog(p:), ©)

where p; denotes the global probability density function of the occurrence of the outcome i.

Meanwhile, Shannon entropy highlights a significant limitation in spatial awareness.
Current entropy models, such as Shannon, Tsallis, and Renyi entropy, are calculated only
from the probability distribution function (PDF) of pixel intensities, overlooking the spatial
arrangement of those pixels. Consequently, when the pixels in an image are randomly
shuffled, the PDF remains unchanged, resulting in identical entropy values for both the
original and shuffled images. This limitation persists even though the two images are

visually distinct, as demonstrated in Figure 1.

(b) (c) (d) (e)

Figure 1. Comparison of pixel shuffling in grayscale image with entropy and standard deviation
values: (a) original image; (b) image with pixels shuffled row-wise; (c) image with pixels shuffled
column-wise; (d) fully shuffled image (rows and columns); (e) image histogram.
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To illustrate the limitation of global statistical image quality assessments (IQAs),
Table 2 presents the inadequacy of global metrics, where the standard deviation (), Shan-
non entropy (Hs), Tsallis entropy (H;), and Renyi entropy (H,) are compared before
and after pixel shuffling. Despite the loss of structural coherence, these metrics remain
unchanged, as they are influenced solely by the statistical distribution of pixel intensities.

Table 2. Entropy-based metric values for images described in Figure 1.

Shannon Tsallis .
Image o [48] [42] Renyi [43]
Original image 28.7754 6.8363 0.9895 4.5582
Image with pixels shuffled row-wise 28.7754 6.8363 0.9895 4.5582
Image with pixels shuffled column-wise 28.7754 6.8363 0.9895 4.5582
Fully shuffled image 28.7754 6.8363 0.9895 4.5582

2.3.1. Block-Based Probability Density Functions (BPDFs)

The new model is specifically designed to overcome the spatial insensitivity of tradi-
tional entropy measures by integrating local spatial information within block-based regions.
This approach provides a comprehensive representation of image content, allowing better
differentiation between visually distinct images with the same global intensity histograms.
The formulation of the proposed A-Entropy is

Y

n [pi]?y [pi]?y
H=) ., o= +e| tan”|log o te , (10)
[ ]x,y Wlxy

where [Pi]?,y denotes the probability density of pixel intensities within a block (),

[w]gy refers to a weighting factor to normalize probabilities within each block, v rep-
resents an adjustable parameter that controls sensitivity to probability variations, and ¢ is a
small constant to avoid undefined behavior during computation.

Local PDFs extend the traditional concept of global statistical analysis by dividing the
image into localized regions and analyzing the statistical characteristics within each region.
By leveraging localized intensity distributions, entropy-based analyses can capture the
spread or concentration of intensity values in specific areas, thus addressing the limitations
of global metrics. Table 3 presents a comparative analysis of entropy-based metrics using
local information.

Table 3. Block-based metric values for images depicted in Figure 1.

Image EME EMEE AME AMEE Proposed
Original image 14.5007 0.7858 11.1357 0.4324 0.7076
Image with pixels shuffled row-wise 31.5322 20.5739 13.7218 0.6765 0.8706
Image with pixels shuffled column-wise 31.1548 20.8945 13.7203 0.6763 0.8707
Fully shuffled image 14.5007 0.7858 11.1357 0.4324 0.7076

2.3.2. Monotonic Properties

The incorporation of local PDFs demonstrates an improvement in detecting structural
changes, making them a more accurate and reliable approach to IQA. In addition, when
applied to enhanced images, the metrics measure increases in contrast by analyzing the
spread and concentration of intensity values within localized regions. Higher Degree-of-
Enhancement (DoE) values correspond to greater contrast improvements, as reflected in
entropy-based metrics, as shown in Figures 2 and 3, and Table 4.
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Figure 2. Comparison of thermal image enhancement with different Degrees of Enhancement (DoEs):
(a) original image; (b) 25% DoE; (c) 50% DoE; (d) 75% DoE; (e) 100% DokE.

P g b B ) e i 1 P B ot B P B bt S e e e

P o e i 181 e e e

(a) DoE = 0.00 (b) DoE = 0.25 (c) DoE = 0.50 (d) DoE = 0.75 (¢) DoE = 1.00

P o g i 1 Pt e i A1 e

Figure 3. Monotonic increase in kernel-based metric values with higher Degrees of Enhancement
(DoEs) depicted in Figure 2: (a) original image; (b) 25% DoE; (c) 50% DoE; (d) 75% DoE; (e) 100% DoE.

Table 4. Kernel-based metric values for images depicted in Figure 2.

Image DoE EME EMEE AME AMEE Proposed
0% 15.5717 0.9833 12.2236 0.5241 0.3245
25% 16.0210 1.0582 12.6684 0.5666 0.3268
50% 16.3847 1.1297 12.9094 0.5906 0.3292
75% 16.7365 1.2205 13.0533 0.6055 0.3312
Imagel 100% 17.0714 1.3254 13.1471 0.6156 0.3332
0% 15.3141 0.9125 12.2881 0.5324 0.3271
25% 15.6861 0.9682 12.6490 0.5667 0.3288
50% 16.0095 1.0253 12.8522 0.5867 0.3304
75% 16.3286 1.0948 12.9693 0.5989 0.3317
Image?2 100% 16.6670 1.1881 13.0366 0.6064 0.3327
0% 15.0002 0.8751 11.6894 0.4758 0.3084
25% 15.4134 0.9405 12.3179 0.5325 0.3114
50% 15.7595 1.0040 12.6592 0.5648 0.3143
75% 16.0816 1.0770 12.8633 0.5852 0.3172

Image3 100% 16.3864 1.1613 13.0039 0.5996 0.3200
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The results presented in Table 3 demonstrate the performance of various kernel-
based metrics, including Enhancement Measure Estimation (EME), Enhancement Measure
Estimation by Entropy (EMEE), Average Michelson Contrast Estimation (AME), Average
Michelson Contrast Estimation by Entropy (AMEE), and the proposed entropy-based
metric, across images with increasing Degrees of Enhancement (DoEs). These metrics
collectively capture the effects of enhancement on image quality in terms of contrast.

The values for all metrics show a consistent monotonic increase with higher DoE levels
across all images (Imagel, Image2, and Image3), as illustrated in the accompanying figure.
This trend confirms the effectiveness of the proposed entropy model, where an increased
DoE correlates with improved contrast and structural clarity in the images. The proposed
metric steadily rises, more accurately representing structural and contrast changes. This is
particularly evident in the uniformity of its response across all tested images.

3. Proposed Method

This section introduces an effective method of multi-threshold image segmentation
based on entropy. The implementation steps are detailed below.

3.1. Entropy-Based Image Segmentation with Adaptive Gamma Correction

Utilizing an entropy-based measure to tackle multi-thresholding challenges in image
segmentation involves mapping solutions to problems. By leveraging entropies, measurable
uncertainty, or information content metrics, segmentation methods aim to partition images
into distinct regions by maximizing information gain. This approach has proven effective in
scenarios requiring optimal threshold determination, such as separating foreground from
background regions or distinguishing objects of interest within complex scenes. Despite its
advantages, the entropy-based method faces limitations, including sensitivity to noise, high
computational demands, and reliance on global thresholding strategies. These challenges
drive ongoing research aimed at refining entropy-based segmentation techniques. To
address these issues, the proposed concept employs the principles of entropy-based image
segmentation. The method begins with adaptive gamma correction applied to the input
image to enhance contrast and adjust for variations in illumination. This preprocessing
step ensures that the image’s dynamic range is optimized for segmentation tasks, making
it more suitable for entropy-based analysis.

The motivation behind the proposed method is to integrate entropy-based image
segmentation techniques with local probability density functions (PDFs) in both the loga-
rithmic and trigonometric domains. By transforming the image data into these domains,
the algorithm can more effectively capture both the global and local characteristics of the
image, as shown in Algorithm 1.

Algorithm 1 outlines the detailed computational process of the proposed multilevel
entropy-based thresholding method, providing a structured framework for guiding the
segmentation procedure. By integrating this approach with the iterative multilevel thresh-
olding technique, the segmentation process is further enhanced through the iterative
refinement of threshold values. This refinement, driven by entropy optimization, ensures
more accurate segmentation of regions within the image, particularly for complex images
with varying intensity distributions, as detailed in Algorithm 2.

To maintain computational stability, the initial entropy value is set to —oo, as shown
in Algorithm 1. Additionally, to prevent division errors when p; = 0, the calculation is
skipped by setting ¢ to 1, as defined in the entropy function in Algorithm 1.

This algorithm performs multilevel thresholding-based segmentation on thermal
images using an iterative approach. The primary objective is to adaptively enhance the
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foreground, efficiently remove the background, and reduce the computational complexity
of threshold determination.

Algorithm 1: Entropy-based multilevel thresholds.

Input: Input thermal image, I, of size M x N.
Number of thresholds, T),.
Output: Optimal thresholds, Te.

Normalize intensity value : Lorm < ﬁ{l}

Compute histogram : h; + Eﬁil 29]:1 O(Lnorm(x,y) —1i);Vi € [0,L — 1], where L
denotes the number of intensity levels and J refers to the Dirac
delta function.

Compute PDF : pi < L—i h-

Compute the cumulative weight : ws < ;s pi, where w; represents the cumulative
weight of segment s.

Define the entropy function : Es <— =Y, (f,—i + e) ‘tan (log<£—i + e) ) , Where ¢ is a constant.

Initialization : Epax < —co and Ty < {0,0,...,0} of size T),.
Fora =1Do
Forb =a+1Do
For ... Do

Partition the intensity range into T, segments:
{Z“tk,l < i < tk}/ k 1,2,...,Tﬂ
{ilkr < i<k}, k< Tor,.. 0 Ty where Ty < 0.
{i‘tkfl < i < tk} , k Tnfl/“ .,Tn
Compute the total entropy for the current threshold:
Er L%y E(SK) + - + i, E(Sk)
If Er > Epax
Emax < ET
Tq;. — Ta,Th,...,Tn
End
End
End
End

Algorithm 2: Iterative multilevel thresholding image segmentation.

Input: Input thermal image, I, of size M x N.
Number of thresholds, Tj,.
Output: Segmented image, B

Te < Call Algorithm I (I, T, < 1).

. I
Calculate the mean intensity : p < %
e ma{xl{}l} )
Compute 7 : Ye T2
Generate a mapping function : f(i) < log< (E‘ ! )) )
1
Rescale f(i) to [0,L — 1] : ( a){f) '}“mrf‘{n{f }) 0 (L—1)
Apply f'(i) to the image : Y(—f’ I);Vie{l,2,...,Mx N}
Ty < Call Algorithm I (Y, T;, < n).
{plp =t} » kel
Partition the intensity into n 4+ 1 segments : Sy <— < {p|tr_1 <p <t;}, k< 2,...,n
{plp > tu} , kn+1
L b
Compute the local mean for each S: py ples:‘

Assign py to all pixels in Sy : Gy < px
Te < Call Algorithm I (G, T, < 1).

<
Binarize G using T : B« {(1]: gz > ;Z
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3.2. Adaptive Image Enhancement

The proposed algorithm introduces an adaptive image enhancement framework de-
signed to improve the visibility and contrast of bright regions while minimizing irrelevant
background details. Unlike conventional image enhancement techniques that rely on sta-
tistical histogram-based values, this method dynamically adjusts the gamma parameter
(7¢) according to the global intensity properties of the input image. The gamma value is
computed using the global mean intensity (¢) and the maximum intensity value (L) of

the image, as defined by
( p—Imax /2 )
Yo =¢€ Tmax /2

(11)

here, j represents the global mean intensity of an input image (I), enabling the algorithm to
adapt to varying lighting and contrast conditions. This adaptive computation ensures that
the gamma value aligns with the image’s inherent characteristics, preventing over- or under-
enhancement. Following the gamma calculation, a logit-based transformation is applied
to amplify foreground homogeneity and suppress background noise. The transformation
function is expressed as

f(i) =log (% +'rcp> +p, (12)

where i is the pixel intensity, L is the total number of intensity levels (e.g., 256 for an 8-bit
image), 7y ¢ is the adaptive parameter from Equation (11), and p is a constant. This function
enhances contrast by non-linearly redistributing intensity values (see Figure 4), empha-
sizing subtle differences in foreground regions while attenuating background variations.
The proposed image enhancement technique achieves a balanced improvement tailored
to the specific content of the image by integrating global intensity statistics with a logit
transformation. This approach optimizes the balance between foreground visibility and
background suppression, enabling more accurate segmentation and analysis.

Transformation Functions with Different 5,

Output intansity

[ 50 100 150 200 250
Inpus intansity

Figure 4. Transformation functions with different .

The experimental results validate the efficacy of the proposed image enhancement
approach in optimizing image segmentation tasks. Figure 5 illustrates how dynamically
computed gamma values refine the balance between foreground enhancement and back-
ground suppression. When gamma values are set lower than the proposed adaptive
parameter, the transformation creates a pronounced separation between the foreground
and background. For example, in Figure 5h, the kangaroo (region of interest) is accen-
tuated by brighter intensities, while the background is uniformly darkened, minimizing
distractions and improving focus on critical structures. This selective enhancement directly
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enhances segmentation accuracy by amplifying contrast gradients between the foreground
and background, even in low-contrast scenarios.

() (h)

Figure 5. Comparison of thermal image with different y: (a) input image; (b) v = 1.00; (c) v = 0.50;
p—max{l}/z)

(d) v = 0.25; (e) v = 0.10; (f) v = 0.01; (g) ¥ = 0.001; (h) v = e( max{I}/2/

Figure 6 compares the proposed method’s segmentation outcomes with traditional
entropy-based approaches (Kapur, Masi, and Renyi) on images with complex intensity
distributions. Key observations include the following: (i) Kapur’s method is prone to
over-segmentation, especially in regions with high intensity variability, resulting in frag-
mented outputs that lack structural coherence; (ii) Masi’s method struggles with boundary
delineation, failing to capture precise object contours; and (iii) Renyi’s method improves
object definition compared to Kapur and Masi methods but retains residual noise and com-
promises structural continuity. In contrast, the proposed method achieves clean, cohesive
segmentation by leveraging adaptive image enhancement. It effectively suppresses noise,
isolates primary objects, and preserves structural integrity, aligning closely with human
perceptual expectations. The proposed method also demonstrates superior adaptability
to intensity variations through its smooth and distinct probability density function (PDF).
Unlike traditional entropy-based techniques, which exhibit erratic PDFs in heterogeneous
regions, the adaptive image enhancement ensures a balanced intensity redistribution. This
results in a more robust segmentation framework capable of handling complex lighting
and contrast conditions.

(a)

(d) (e ®
Figure 6. Comparative analysis of segmentation accuracy between the proposed model and existing

entropy-based functions: (a) input image; (b) Kapur segmentation; (c) Masi segmentation; (d) entropy
functions; (e) Renyi segmentation; (f) proposed segmentation.

Additionally, the comparative analysis in Figure 7 highlights the critical role of the
parameter p in balancing contrast enhancement and background suppression. When p is
adaptively derived from the image’s global mean intensity (), as in the case of p = u /107,
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as shown in Figure 7b, the enhancement process prioritizes context-aware adjustments.
This adaptive setting produces a histogram, as shown in Figure 7c, with a broader intensity
distribution, indicating improved dynamic range and contrast in regions of interest. Such
adaptive tuning aligns the enhancement with the image’s inherent intensity characteristics,
ensuring that foreground details are accentuated without overamplifying noise.

(d) (e)

Figure 7. Comparative analysis of enhancement performance with different (a) input im-
ages; (b) enhanced images p = u/107; (c) histogram of (b); (d) enhanced images p = 2;
(e) histogram of (d).

In contrast, a fixed p = 2, as shown in Figure 7d, results in a more uniform enhance-
ment effect. The corresponding histogram, as shown in Figure 7e, exhibits a narrower inten-
sity spread, suggesting aggressive background suppression at the cost of reduced contrast
in mid-tone regions. While this setting effectively darkens non-critical areas, it risks over-
smoothing subtle foreground textures, particularly in scenes with low baseline contrast.

4. Computer Simulation Results and Discussion

We implemented the proposed approach using the computer language MATLAB2024b
on a personal computer with 16 GB of memory and a CPI of Apple M2 Pro running
macOS Sequoia 15.2 (24C101). To show the advantages of this method, we performed several
experiments on the BIRDSAI dataset [40], which is used to detect wildlife from thermal
imagery, namely, Image4, Image5, and Image6, as shown in Figure 8. We applied the same pre-
processing procedure to all methods before segmentation to ensure a fair comparison. This pre-
processing step included adaptive image enhancement to improve segmentation accuracy. We
then compared the proposed algorithm with various entropy-based image thresholding meth-
ods, including the Shannon [48], Tsallis [42], Renyi [43], Kapur [4], and Masi [44] methods.
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g h

”’P mfﬂ i j

(b) (©)

Figure 8. Test images and their histograms for: (a) Image4; (b) Image5; (c) Image6.

4.1. Databases

The BIRDSAI dataset facilitates research in aerial wildlife monitoring, conservation,
and anti-poaching surveillance. It provides a blend of real and synthetic aerial thermal
infrared (TIR) images to support domain adaptation and robust algorithm development
under challenging visual conditions [33]. Figure 9 shows some sample images from the
real and synthetic datasets.

(a) ()

Figure 9. Sample images from the real and synthetic datasets. From left to right: small, medium,
and large objects. The two images in (a) are real images of animals and humans, respectively,
while (b) presents synthetic images of animals and humans. The synthetic data comprise a mixture
of summer and winter scenes, with winter scenes featuring dark trees against the ground.

This dataset features aerial TIR images of protected African areas and is designed for
object detection, domain adaptation, and tracking of humans and animals. It is the first
large-scale dataset from a fixed-wing UAV across multiple African sites, containing 48 real
and 124 synthetic videos, totaling 62,000 and 100,000 images, respectively. The data include
nine classes: human, elephant, and lion (real and synthetic); giraffe and dog (real); and
crocodile, hippo, zebra, and rhino (synthetic). Synthetic data were generated using AirSim
with a 3D savanna model and a TIR camera simulation.

Real data were collected using battery-powered fixed-wing UAVs in South Africa,
Malawi, and Zimbabwe, with the specific locations withheld for security. Nighttime
flights, lasting 1.5-2 h, occurred at altitudes of 60-120 m and speeds of 12-16 m/s, using
FLIR Vue Pro 640 and Tamarisk 640 cameras. Temperature conditions varied seasonally,
with winter nights ranging from below 0 °C to 4 °C and summer nights from 18 to 20 °C.
Challenges included warm ground temperatures, reducing thermal contrast post-sunset,
and occasional fog-induced “whiteouts”.

The kangaroo (Macropodidae) dataset [49] provides regularly captured images from
thermal imaging surveys. The imagery in this database was collected by the Department of
Primary Industry, New South Wales (NSW), and the Department of Primary Industries and
Regional Development, Western Australia, as illustrated in Figure 10.

Figure 10. Sample images from the real-world kangaroo (Macropodidae) dataset.
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4.2. Objective Results

In evaluating the performance of our model, the performance of six methods—Shannon [48],
Tsallis [42], Renyi [43], Kapur [4], Masi [44], and the proposed method—was evaluated across six
critical metrics: accuracy, Boundary F1 (BF) score, Serensen-Dice Similarity, Jaccard Similarity,
precision, and recall. The evaluation was conducted using three thresholds (k = 1, 2, 3) on selected
test images (Image4, Imageb, and Image6) due to space constraints.

4.2.1. Metric Descriptions

The evaluation of semantic segmentation can be quite complex because it is necessary
to measure classification accuracy and localization correctness. The aim is to score the
similarity between the predicted (prediction) and annotated segmentation (ground truth).
The evaluation metrics used in this paper are summarized in Table 5.

Table 5. Metric descriptions and formulations.

Metric

Description Mathematical Formulations

Accuracy

Boundary F1 (BF) Score

Measures the overall proportion of correctly classified pixels, including
foreground and background. A general measure of classification performance.
Evaluates how well predicted boundaries match ground-truth edges, using F1
score principles at the object boundary level. This is critical for applications BF = 2;lreision—Recall
requiring precise contour alignment.

Measures the overlap between predicted and ground-truth regions, emphasizing

_ TP+ TN
Accuracy = FprrNFpTEN

Serensen-Dice Similarity Coefficient (DSC) correct segmentation of object areas. Also known as the Dice coefficient DSC = 72”,3;; TN
or F1 score.
Jaccard Similarity (ToU) Assesses the ratio between the intersection and union of the predicted and ol — P
y ground-truth masks. This is useful for understanding overall spatial accuracy. 08 = T1piFPTIN
Precision Ind1§at¢s the proporhgn of cor'ref:ﬂy pr?dl'ct.ed positives among all positive Precision — T2
predictions, representing prediction reliability. TP+FF
Recall (Sensitivity) Measures the proportion of correctly predicted positives among all actual Recall — TPTF .

positives, indicating detection completeness.

TP (true positive) represents the number of pixels that have been correctly classified or segmented, FP (false
positive) represents the number of background pixels that have been incorrectly classified as foreground (often
due to misalignment), FN (false negative) denotes the number of foreground pixels that have been misclassified
as background, and TN (true negative) indicates the number of background pixels that have been correctly
identified as background.

Based on the literature and practical considerations, it is helpful to combine differ-
ent metrics. Individual metrics such as accuracy, the Dice Similarity Coefficient (DSC),
Boundary F1 score (BF), Jaccard Similarity (IoU), precision, and recall each provide unique
approaches but also have limitations. For instance, accuracy is simple to compute, but it
can be misleading in imbalanced datasets. The DSC and IoU are effective for measuring
region overlap but may overlook boundary precision. In contrast, the BF score captures
boundary alignment but is less informative about the overall region accuracy.

Table 6 presents a comparative summary of the strengths and limitations of the key
evaluation metrics in image segmentation evaluation [50].

By integrating these advantages and compensating for individual weaknesses, a
Combined Score (CS) is introduced. It is calculated by weighting two key metrics: the Dice
Similarity Coefficient (DSC) and the Boundary F1 score (BF):

CS = wy-DSC + (1 — wy)BE (13)

where wy, is a constant.
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Table 6. Advantages and disadvantages of metrics.

Metric Advantages Disadvantages
. Misleading for imbalanced data.
. Does not reflect boundary precision or
. Simple and intuitive. spatial overlap.
Accuracy e  Effective for balanced datasets. e  May mask poor performance for

Boundary F1 (BF) Score

minority classes.

Computationally intensive.
Less informative for overall
region overlap.

. Sensitive to boundary alignment.
. Critical for contour-based tasks.

. Balances false positives and
false negatives. . Less sensitive to boundary errors.
Serensen-Dice Similarity Coefficient (DSC) . Effective for region overlap. . Can be inflated in images with large
e  Commonly used in background areas.

Jaccard Similarity (IoU)

Precision

Recall (Sensitivity)

medical segmentation.

. Directly measures region overlap. . More sensitive to misclassifications
. Effective for sparse or imbalanced data. than DSC.
. Useful for fair comparison of models. . Less intuitive interpretation.

. Ignores false negatives.

* Highlights false positives. May overestimate performance if recall

. Important in false-alarm-sensitive tasks.

is low.
. Highlights missed detections. . Ignores false positives.
. Essential in completeness-focused tasks. e May encourage over-segmentation.

4.2.2. Performance Analysis

Table 7 presents the segmentation accuracy across various entropy-based thresholding
methods under different numbers of thresholds. The results indicate that the proposed
method achieves the highest accuracy, particularly in the single-threshold case (k = 1),
with scores of 0.9997, 0.9990, and 0.9978 for Image4, Image5, and Image6, respectively.
While Masi is competitive, with scores of 0.9924, 0.9945, and 0.9841, it trails the proposed
method. For k = 2, the proposed method performs well, with accuracies of 0.9841, 0.9918,
and 0.9672, although Kapur and Masi show comparable results, particularly for Image5 and
Image6. At k = 3, the proposed method maintains high accuracy (0.9751, 0.9877, and 0.9458),
although Renyi and Masi slightly outperform it in some cases. Typically, entropy-based
segmentation relies on histogram bin separation, and using a single threshold makes it
challenging to segment all regions accurately. However, the proposed method demonstrates
robust performance even under this constraint.

Table 8 presents the Boundary F1 (BF) scores for various entropy-based thresholding
methods across different numbers of thresholds. The results show that Masi delivers the
highest boundary precision across all images and threshold settings. Notably, Masi achieves
near-perfect scores at k = 3, with values of 0.9944 for Image4, 0.9964 for Image5, and 0.9541
for Image6. These results demonstrate Masi’s effectiveness in delineating object boundaries,
especially in higher-threshold scenarios.

The proposed method also performs competitively, particularly for a single threshold
(k =1), achieving BF scores of 0.9821, 0.8964, and 0.9412 for Image4, Image5, and Image6,
respectively. However, its performance slightly declines as the number of thresholds
increases, suggesting that it is especially well suited for low-complexity segmentation tasks.
For k =2 and k = 3, the proposed method trails Masi. This indicates room for improvement
in handling more complex multi-threshold segmentation cases. Renyi and Kapur show
strong performance in multi-threshold scenarios. For instance, Renyi achieves the highest
BF score (0.9986) on Image5 for k = 3. It outperforms the proposed method and closely
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matches Masi. Kapur also performs well. It reaches scores of up to 0.9877 on Image5 and
Image6. In contrast, Shannon and Tsallis exhibit poor boundary performance, especially for
multi-threshold settings (k = 2 and k = 3).

Table 7. Accuracy.

Number of Thresholds
Entropy Method Image
k =1 k =2 k =3
Image4 0.9852 0.8247 0.8751
Shannon [48] Image5 0.1861 0.9979 0.0297
Image6 0.9964 0.0952 0.0952
Image4 0.9802 0.0482 0.0482
Tsallis [42] Image5 0.9887 0.0297 0.0297
Image6 0.9601 0.0756 0.0756
Image4 0.9734 0.9871 0.9938
Renyi [43] Image5 0.9877 0.9937 0.9971
Image6 0.9458 0.9770 0.9899
Image4 0.9703 0.9663 0.9880
Kapur [4] Image5 0.9857 0.9955 0.9955
Image6 0.9401 0.9841 0.9841
Image4 0.9924 0.9951 0.9956
Masi [44] Image5 0.9945 0.9964 0.9974
Image6 0.9841 0.9957 0.9978
Image4 0.9997 0.9847 0.9751
Proposed Image5 0.9990 0.9918 0.9877
Image6 0.9978 0.9672 0.9458

Overall, while Masi leads in boundary accuracy across all settings, the proposed
method remains highly competitive for single-threshold segmentation. Its strong perfor-
mance at k = 1 makes it an attractive option for real-time or resource-constrained appli-
cations. The low computational overhead further supports its suitability where accurate
boundary preservation is essential.

Table 9 presents the Serensen-Dice Similarity scores for various entropy-based thresh-
olding methods across different numbers of thresholds. The proposed method achieves
the highest similarity scores for single-threshold segmentation (k = 1) on all three images,
with values of 0.9966, 0.9799, and 0.9850 for Image4, Image5, and Imageb6, respectively. This
demonstrates the method’s strong ability to preserve object regions in low-complexity
segmentation tasks. However, the performance of the proposed method declines as the
number of thresholds increases. Atk =2 and k = 3, the similarity scores drop significantly,
especially for Image6 (0.7035 and 0.3907, respectively). This suggests that the method is
less effective in handling complex segmentation tasks that require multiple thresholds.
In contrast, Masi shows strong and consistent performance across all threshold levels. It
delivers high Serensen-Dice scores, particularly at k = 3, with values of 0.9517, 0.9408, and
0.9846 across Image4, Image5, and Image6, respectively. Masi’s stability makes it a strong
alternative for multi-threshold segmentation scenarios. Renyi and Kapur also perform
well in multi-threshold cases, especially at k = 3, with Renyi achieving over 0.92 for all
images. Kapur shows notable improvement at k = 3 on Image4 and Image6. It reaches scores
of 0.8551 on Image4 and 0.8749 on Image6. On the other hand, Shannon and Tsallis perform
poorly, particularly in multi-threshold settings. Their scores drop sharply with increasing
thresholds. This indicates their limited capability in accurately segmenting complex scenes.
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Table 8. BF (Boundary F1) score.

Number of Thresholds
Entropy Method Image
k = 1 k = 2 k = 3
Image4 0.9233 0.3676 0.4245
Shannon [48] Imageb 0.0819 0.9862 0.0673
Image6 0.9263 0.1513 0.1513
Image4 0.8632 0.0000 0.0000
Tsallis [42] Imageb 0.9227 0.0673 0.0673
Image6 0.8818 0.2028 0.2028
Image4 0.7601 0.9380 0.9788
Renyi [43] Image5 0.9061 0.9638 0.9986
Image6 0.8447 0.9510 0.9892
Image4 0.7109 0.6389 0.9423
Kapur [4] Image5 0.8861 0.9877 0.9877
Image6 0.8093 0.9801 0.9801
Image4 0.9698 0.9893 0.9944
Masi [44] Imageb 0.9733 0.9965 0.9964
Image6 0.9801 0.9917 0.9541
Image4 0.9821 0.9179 0.7939
Proposed Image5 0.8964 0.9444 0.9061
Image6 0.9412 0.9151 0.8447
Table 9. Serensen—Dice Similarity.
Number of Thresholds
Entropy Method Image
k = 1 k = 2 k = 3
Image4 0.8148 0.3508 0.4314
Shannon [48] Imageb 0.0550 0.9532 0.0465
Image6 0.9755 0.1367 0.1367
Image4 0.7351 0.0905 0.0905
Tsallis [42] Imageb 0.6873 0.0465 0.0465
Image6 0.6136 0.1342 0.1342
Image4 0.6093 0.8425 0.9298
Renyi [43] Image5 0.6497 0.8451 0.9353
Image6 0.3907 0.8088 0.9239
Image4 0.5442 0.4478 0.8551
Kapur [4] Image5 0.5655 0.8950 0.8950
Image6 0.2814 0.8749 0.8749
Image4 0.9125 0.9450 0.9517
Masi [44] Imageb 0.8673 0.9172 0.9408
Image6 0.8749 0.9690 0.9846
Image4 0.9966 0.8067 0.6440
Proposed Image5 0.9799 0.7890 0.6497
Image6 0.9850 0.7035 0.3907

In summary, the proposed method excels in single-threshold segmentation. It offers
near-perfect similarity to the ground truth with minimal computational demand. How-
ever, methods like Masi or Renyi may offer more consistent performance for applications
requiring more intricate, multi-threshold segmentation. However, visual comparison offers
a similar output. As mentioned above, based on the literature and practical considerations,
the above metrics do not always work well for all kinds of image segmentation [50].

Table 10 presents Jaccard Similarity scores for different entropy-based thresholding
methods across varying numbers of thresholds. The proposed method achieves the highest
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scores for a single threshold (k = 1) on all images, with values of 0.9933 (Image4), 0.9607
(Imageb5), and 0.9704 (Image6). This indicates exceptional overlap between the segmented
results and the ground truth when using a single threshold, confirming the proposed
method’s reliability in low-complexity segmentation tasks. However, as the number of
thresholds increases, the performance of the proposed method declines noticeably. For k =
2, the scores drop to 0.6761, 0.6515, and 0.5426 for Image4, Image5, and Image6, respectively.
At k = 3, the scores decrease further, particularly on Image6, for which the score reaches only
0.2428. This suggests a significant reduction in segmentation accuracy under complex multi-
threshold conditions. In contrast, Masi shows strong and consistent performance across
all thresholds, especially at k = 3, achieving 0.9079, 0.8882, and 0.9696 for Image4, Image5,
and Image6, respectively. This highlights Masi’s robustness in more complex segmentation
scenarios. Renyi and Kapur also show improved performance as the number of thresholds
increases, particularly on Image4 and Image6. For example, Renyi reaches 0.8785 on Image5
and 0.8586 on Image6 at k = 3. It outperforms the proposed method in multi-threshold
settings. On the other hand, Shannon and Tsallis exhibit weak performance, especially for k
=2 and k = 3, where scores drop significantly across all images. This indicates their limited
suitability for detailed segmentation.

Table 10. Jaccard Similarity.

Number of Thresholds

Entropy Method Image
k = 1 k = 2 k = 3
Image4 0.6874 0.2127 0.2750
Shannon [48] Image5 0.0283 0.9106 0.0238
Image6 0.9523 0.0733 0.0733
Image4 0.5218 0.0474 0.0474
Tsallis [42] Image5 0.5235 0.0238 0.0238
Image6 0.4426 0.0719 0.0719
Image4 0.4381 0.7278 0.8689
Renyi [43] Image5 0.4811 0.7318 0.8785
Image6 0.2428 0.6789 0.8586
Image4 0.3739 0.2885 0.7469
Kapur [4] Image5 0.3943 0.8099 0.8099
Image6 0.1637 0.7776 0.7776
Image4 0.8390 0.8957 0.9079
Masi [44] Image5 0.7656 0.8470 0.8882
Image6 0.7776 0.9398 0.9696
Image4 0.9933 0.6761 0.4749
Proposed Image5 0.9607 0.6515 0.4811
Image6 0.9704 0.5426 0.2428

The proposed method excels in single-threshold segmentation with high similarity
and low computational cost. This makes it well suited for applications requiring real-time
processing and simple segmentation. Alternative methods like Masi or Renyi may offer
better performance for complex scenarios involving multiple thresholds.

Table 11 presents precision scores for various entropy-based thresholding methods
across different numbers of thresholds (k =1, k = 2, and k = 3) for three test images (Image4,
Image5, and Image6). Across the board, higher precision values reflect more accurate and
reliable segmentation performance.
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Table 11. Precision.

Number of Thresholds

Entropy Method Image
k = 1 k = 2 k = 3
Image4 1.0000 0.2127 0.2750
Shannon [48] Imageb 0.0283 0.9969 0.0238
Image6 0.9523 0.0733 0.0733
Image4 1.0000 0.0474 0.0474
Tsallis [42] Imageb 1.0000 0.0238 0.0238
Image6 1.0000 0.0719 0.0719
Image4 1.0000 1.0000 1.0000
Renyi [43] Image5 1.0000 1.0000 0.9998
Image6 1.0000 1.0000 1.0000
Image4 1.0000 1.0000 1.0000
Kapur [4] Image5 1.0000 1.0000 1.0000
Image6 1.0000 1.0000 1.0000
Image4 1.0000 1.0000 1.0000
Masi [44] Imageb 1.0000 1.0000 0.9992
Image6 1.0000 0.9985 0.9780
Image4 0.9933 1.0000 1.0000
Proposed Image5 0.9607 1.0000 1.0000
Image6 0.9704 1.0000 1.0000

The proposed method exhibits excellent performance, particularly at multi-threshold
levels, achieving perfect precision (1.0000) for all images at k = 2 and k = 3. This indicates
that the method is highly effective in minimizing false positives, especially in complex
segmentation scenarios. Even at k = 1, its precision remains high—0.9933 for Image4,
0.9607 for Image5, and 0.9704 for Image6. This confirms the method’s reliability in simple
segmentation tasks and its potential for consistent performance as complexity increases.
Masi, Renyi, and Kapur entropies also perform exceptionally well, with Masi and Kapur
achieving near-perfect or perfect precision across all thresholds. Renyi entropy slightly
underperforms only at k = 3 for Image6 (0.9780) but remains highly competitive. These
methods are consistently effective at reducing false positives and maintaining high true-
positive detection across various threshold levels. In contrast, Shannon and Tsallis entropies
perform well only at k = 1, but they suffer from severe drops in precision at higher thresholds.
For instance, Shannon’s precision on Image5 falls to 0.0238 at k = 3, and Tsallis exhibits
similarly poor performance across images beyond k = 1. These results highlight their
increased susceptibility to false positive classifications as segmentation complexity grows.

Overall, the proposed method demonstrates outstanding performance in high-
precision segmentation, particularly for multi-threshold tasks. It effectively minimizes false
positives. Along with Masi, Renyi, and Kapur, it proves suitable for complex segmentation
applications. However, given the limitations of precision as a standalone metric, future
evaluations should incorporate recall-based measures to ensure a balanced assessment of
segmentation quality.

Table 12 presents the recall scores for various entropy-based thresholding methods
applied to three test images (Image4, Imageb, and Image6) across increasing segmentation
complexity (k =1, 2, and 3). Recall quantifies the proportion of correctly identified object
pixels (true positives) out of all actual object pixels (true positives + false negatives). A
higher recall indicates fewer missed detections, which is especially critical in applications
where missing relevant regions is costly, such as medical imaging or defect detection.



Entropy 2025, 27, 526 22 of 29

Table 12. Recall.

Number of Thresholds
Entropy Method Image
k = 1 k = 2 k = 3
Image4 0.6874 1.0000 1.0000
Shannon [48] Imageb 1.0000 0.9132 1.0000
Image6 1.0000 1.0000 1.0000
Image4 0.5812 1.0000 1.0000
Tsallis [42] Imageb 0.5235 1.0000 1.0000
Image6 0.4426 1.0000 1.0000
Image4 0.4381 0.7278 0.8689
Renyi [43] Image5 0.4811 0.7318 0.8787
Image6 0.2428 0.6789 0.8586
Image4 0.3739 0.2885 0.7469
Kapur [4] Image5 0.3943 0.8099 0.8099
Image6 0.1637 0.7776 0.7776
Image4 0.8390 0.8957 0.9079
Masi [44] Image5 0.7656 0.8470 0.8889
Image6 0.7776 0.9412 0.9912
Image4 1.0000 0.6761 0.4749
Proposed Image5 1.0000 0.6515 0.4811
Image6 1.0000 0.5426 0.2428

The proposed method achieves perfect recall (1.0000) for all three images at k = 1. It
demonstrates an excellent ability to detect all relevant pixels in low-complexity segmenta-
tion. However, its performance degrades as segmentation complexity increases. Atk =2,
recall drops to 0.6761 (Image4), 0.6515 (Image5), and 0.5426 (Image6) and declines further
at k = 3, particularly on Image6 (0.2428). This trend suggests that the proposed method
minimizes false negatives in simple segmentation tasks. However, its ability to recall all
relevant pixels diminishes in multi-threshold conditions. This decline may be attributed to
over-segmentation or the application of stricter pixel classification criteria as the number
of thresholds increases. In contrast, Shannon and Tsallis entropies exhibit strong recall at
higher thresholds. Both methods reach perfect recall (1.0000) for all three images at k = 3.
Even at k = 2, they maintain strong recall scores. This implies that the methods detect
nearly all object pixels in complex segmentation scenarios. However, this performance
comes despite their previously noted low precision. It indicates a tendency to over-label
background pixels as objects. Masi entropy performs well. It balances recall across all
thresholds. It achieves scores ranging from 0.8390 to 0.9912. Also, it shows robustness
in both complex and straightforward segmentation tasks. This suggests a well-balanced
detection strategy that minimizes both false negatives and false positives. Renyi and Kapur
entropies, however, yield comparatively lower recall values, particularly at k = 1. For
instance, Kapur only achieves 0.1637 on Image6 at k = 1, while Renyi achieves 0.2428. How-
ever, both methods improve recall as k increases. They still fall short in overall effectiveness.
Neither Renyi nor Kapur matches the performance of Masi or Shannon/Tsallis at higher
thresholds. This suggests that their recall improvements are not sufficient to outperform
the more robust methods in complex segmentation tasks.

While high recall indicates the effective detection of relevant pixels, it does not penalize
false positives. A method with high recall may still suffer from poor segmentation quality
if it classifies too many background pixels as objects. Therefore, recall should be interpreted
in conjunction with precision or summarized using the F1 score, which provides a harmonic
balance of the two metrics.
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However, a visual comparison offers a similar output. As mentioned above, based on
the literature and practical considerations, the six evaluation metrics do not always perform
well across all types of image segmentation tasks. Specifically, in the case of Elephant
Segmentation (ES), using accuracy as an evaluation metric is not recommended due to
the severe class imbalance between regions of interest (ROIs) and background pixels. In
typical ES datasets, ROIs constitute only a small portion of the image, while the back-
ground dominates the pixel distribution. Since accuracy includes true negatives—which
are abundant in such imbalanced scenarios—it often results in inflated and misleading
performance scores. This does not accurately reflect the model’s ability to detect clinically
or contextually relevant structures. Therefore, more informative metrics, such as the Dice
Similarity Coefficient and Boundary F1 score, are preferred for assessing segmentation
quality in this context.

4.3. Visual Evaluation

In this section, the results of the algorithms are visually compared. Due to page length
constraints, Image4, Image5, and Image6 are selected as representative examples for analysis.
The ground truth for these images is presented in Figure 11.

(@ (b) (c)
Figure 11. Ground truth: (a) Image4; (b) Image5; (c) Image6.

Based on Figure 12, we analyzed the segmentation performance of various thresh-
olding methods for Image4, comparing the results against the ground truth illustrated in
Figure 9. The Shannon and Tsallis entropy models exhibit significant limitations, particu-
larly at k = 1, where the segmentation is noisy, and object boundaries are fragmented and
unclear. Increasing the number of thresholds (k = 2, 3) slightly enhances segmentation, but
these models still struggle to distinctly isolate the foreground objects (elephants), leading
to excessive over-segmentation in the background regions. The Renyi and Kapur entropy
models also show similar limitations. At k = 1, these methods produce fragmented regions
within areas of interest, resulting in an inconsistent representation of the objects. While the
segmentation quality improves at higher thresholds (k = 2, 3), these methods still introduce
unclear regions, failing to achieve robust segmentation. On the other hand, the Masi en-
tropy model performs better in segmenting the objects compared to the aforementioned
methods. It provides more accurate object boundaries at k = 1 and demonstrates enhanced
segmentation quality with higher thresholds (k = 2, 3). However, Masi occasionally intro-
duces some unclear regions in the foreground. The proposed method consistently achieves
superior segmentation performance compared to the existing entropy-based techniques. At
a single threshold (k = 1), it closely aligns with the ground truth by effectively isolating the
elephants and significantly minimizing noise in the background. As the number of thresh-
olds increases (k = 2, 3), the proposed method maintains the integrity of the segmented
objects while avoiding the over-segmentation issues observed in other methods. Similar
to the Masi entropy model, minor fragmented regions are introduced at higher thresh-
olds; however, the proposed approach remains the most reliable and coherent method for
accurately segmenting the objects and preserving background consistency.
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Figure 12. Thresholding results for Image4: (a) Shannon [48]; (b) Tsallis [42]; (c) Renyi [43];
(d) Kapur [4]; (e) Masi [44]; (f) proposed method (k =1, t =45, k =2, t = 94, 95; and k = 3,
t=123,124,125).

Based on Figure 13, the thresholding results for Imageb reveal notable differences in
performance across the evaluated methods. Shannon entropy fails to segment the objects
effectively at k = 1. While increasing the number of thresholds (k = 2, 3) slightly improves the
separation between objects and the background, the segmentation remains suboptimal with
fragmented and inconsistent regions. Tsallis entropy demonstrates moderate improvements
in object isolation with the initial threshold. However, it fails to deliver robust segmentation,
as increasing the threshold level introduces noticeable fragmentation within the objects
of interest, compromising their structural integrity. The Renyi, Kapur, and Masi entropy
models achieve moderate success in segmenting the objects, with slightly better separation
between the foreground and background. Despite this, they suffer from inconsistencies and
fail to produce clear object boundaries, resulting in segmented regions that lack precision. In
comparison, the proposed method demonstrates superior performance relative to the other
approaches. At k =1, it accurately isolates the objects with well-defined boundaries and
minimal noise, closely matching the ground truth. As the number of thresholds increases
(k =2, 3), the proposed method consistently maintains the integrity of the segmented objects
while effectively avoiding over-segmentation. However, similar to the Renyi, Kapur, and
Masi entropy models, it introduces slightly unclear segmented regions at higher threshold
levels. It is evident that the proposed method demonstrates superior performance with a
single threshold, effectively segmenting the regions of interest with high accuracy. This
approach not only ensures precise object isolation but also achieves this with reduced
computational complexity compared to other methods, making it an efficient and reliable
solution for segmentation tasks.



Entropy 2025, 27, 526

25 of 29

T s

B _)q Yir‘?

(b)

(e) ()

Figure 13. Thresholding results for Image5: (a) Shannon [48]; (b) Tsallis [42];
(c) Renyi [43]; (d) Kapur [4]; (e) Masi [44]; (f) proposed method (k =1, f =50; k = 2, t =98, 99; and
k=3,t=128, 129, 130).

Figure 14 shows the thresholding results for Image6 using various entropy-based
methods at different threshold levels (k = 1, 2, 3). The Tsallis, Renyi, and Kapur entropy
models aim to enhance segmentation by increasing the number of thresholds; however,
they do not provide a clear and consistent delineation of the regions of interest (elephants).
While the Shannon method performs adequately with a single threshold, it struggles to
maintain precision as the number of thresholds increases, resulting in significant noise
and fragmented areas. The Masi entropy method demonstrates improved segmentation
performance by delivering more accurate regions, though some slight incompleteness
remains. As the number of thresholds increases, the accuracy of the segmented results
improves, but this comes with greater computational complexity. In contrast, the proposed
method consistently outperforms other approaches, especially at k = 1, where it achieves
superior segmentation accuracy with clearly defined and coherent regions of interest.
Although the method introduces slightly ambiguous regions at higher threshold levels, its
performance remains competitive. The proposed method with a single threshold excels
in efficiently segmenting regions of interest, offering high accuracy while minimizing
computational complexity.
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Figure 14. Thresholding results for Image6: (a) Shannon [48]; (b) Tsallis [42]; (c) Renyi [43];
(d) Kapur [4]; (e) Masi [44]; (f) proposed method (k =1, t =47, k=2, t =97, 98; and k = 3,
t=127,128,129).

To further clarify the choice between single-threshold and multi-threshold segmenta-
tion, we emphasize that the number of optimal thresholds depends on the complexity of the
image. Multilevel thresholding is advantageous when an image contains multiple regions
of interest with distinct intensity distributions. In complex images, where foreground and
background intensities overlap, multilevel thresholding can better distinguish between
different objects or regions. This is especially useful for images with heterogeneous ther-
mal distributions, where varying intensity levels correspond to different temperatures or
materials. However, single-threshold segmentation is often more effective in high-contrast
scenarios. When an image features a clear foreground-background distinction (such as
elephants against a relatively uniform thermal background), a single threshold can be suffi-
cient to achieve optimal segmentation. The use of multiple thresholds in these cases may
introduce redundant segmentation, increasing computational overhead without significant
improvements in accuracy, as illustrated in Figure 15.

(a) (b) (o)

Figure 15. Comparison of a thermal image: (a) original, (b) single thresholding, and

(c) multilevel thresholding.
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5. Conclusions

This paper presents A-Entropy, initiated by Agaian, a novel adaptive unsupervised
entropy framework designed for the robust segmentation of challenging thermal images.
By addressing the limitations of conventional entropy-based methods, A-Entropy incorpo-
rates a three-stage process: adaptive preprocessing, A-Entropy-driven thresholding, and
postprocessing refinement. This approach effectively enhances the visibility of regions of
interest while mitigating noise and artifacts inherent in thermal imagery.

Evaluated on the BIRDSAI dataset, A-Entropy demonstrates significant improvements
over established methods such as Shannon, Tsallis, and Kapur. Notably, it achieves 8-12%
higher Serensen-Dice scores and surpasses 0.99 accuracy with a single threshold (k = 1),
highlighting its efficiency and precision. Visual analysis further confirms its superior ability
to preserve structural details and delineate accurate boundaries, even in complex scenes,
outperforming competitors like Masi and Renyi.

A-Entropy is adaptable to diverse applications, including medical diagnostics, energy
efficiency monitoring, and surveillance. While minor fragmentation at higher thresholds
warrants further investigation, this study establishes A-Entropy as a powerful tool for
precise and efficient thermal image segmentation, striking a balance between accuracy and
computational cost.
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