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A B S T R A C T

Infrared thermal imaging, a non-destructive testing technology, measures the surface temperature of objects.
Assessing thermal image quality is crucial for image monitoring, system design, algorithm optimization, and
benchmarking. However, developing objective metrics that align with human perception is challenging due
to the distinct structure of thermal images, which often feature high background temperatures and minimal
variance between objects and the background. Existing methods typically target specific local features or overall
image contrast, but new measures are needed to bridge the gap between objective performance and the unique
characteristics of thermal images.

We propose a novel image quality assessment (IQA) method inspired by the human vision system,
specifically designed for thermal images, harmonizing local and global data. The primary contributions
include (1) innovative local, global, and hybrid thermal quality assessment methods that deliver precise image
quality predictions without needing reference images, (2) an experimental analysis evaluating the developed
blind thermal IQA measure’s applicability to various thermal images, and (3) a comprehensive analysis of
traditional IQA measure-based methods applied to publicly accessible thermal databases. Extensive simulations
demonstrate our method’s competitive performance and strong alignment with human perception of image
quality.

1. Introduction

Thermal infrared thermography (IRT) is a technique that uses ther-
mal cameras to capture images based on the infrared radiation emitted
by objects. IRT is a non-invasive diagnostic and monitoring tool with
many applications in various industries, such as medical [1,2], de-
fense [3], agriculture [4] and machine industry [5,6]. IRT can be
especially useful in traffic and object detection scenarios [7], where
the visibility is low due to conditions like nighttime, fog, heavy rain,
or smoke. IRT can also help identify abnormal thermal patterns or tem-
perature variations, indicating faults in photovoltaic (PV) modules [8],
such as hotspots, cracks, loose connections, insulation breakdowns, or
overheating. This can prevent further damage, reduce maintenance
costs, and improve efficiency and safety [9]. Moreover, thermal imag-
ing can automatically diagnose diseases and disorders in humans and
animals under different environmental conditions. Technological ad-
vancements and cost reductions in infrared cameras have made this
technique more accessible and applicable to applications previously
considered impractical. As a result, IRT has attracted increasing interest
from researchers due to its multifaceted applications.
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One of the critical challenges in thermal infrared imaging is as-
sessing the quality of thermal images, which can be degraded by
various distortions during acquisition, processing, and transmission.
Many image processing tools have been developed, focusing on noise
reduction or contrast enhancement [10]. These tools aim to measure
and improve the quality of processed images. However, blind thermal
image quality assessment is challenging, as it requires considering the
unique characteristics and diverse applications of thermal images. This
assessment is essential for comparing different thermal imaging systems
or devices, such as infrared cameras or drones, and selecting the most
suitable ones for specific applications or scenarios [11].

Objective quality metrics for image evaluation are categorized as
full-reference (FR), reduced-reference (RR), and no-reference (NR). FR
image quality assessment (IQA) methods compare an image’s quality
with a reference image, while NR or blind methods do not rely on a
benchmark image [12]. However, due to their distinct structural char-
acteristics, NR-IQA methods typically used for visible light images may
not be suitable for thermal images. Some blind IQA methods use artifi-
cially generated pseudo-reference images for quality assessment [13,
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14]. Another study introduces a wavelet-predominant algorithm for
evaluating the quality and usability of non-visible spectrum THz secu-
rity images [15]. The latest work includes RichIQA, a novel IQA method
that utilizes a three-stage prediction network powered by a Convo-
lutional vision Transformer and a multi-label training strategy [16].
Additionally, there has been a significant advancement in IQA for
videos [17].

Pioneering works such as Lifelong Blind Image Quality Assessment
(LIQA) by Liu et al. [18] and attention-based neural networks in
IQA [19] have improved the accuracy of these methods by focus-
ing on visually significant regions within images. Despite the success
of traditional blind IQA methods for visible light images, their ef-
fectiveness for thermal images is limited due to essential structural
differences. Popular no-reference quality metrics such as BRISQUE,
NIQE, and PIQE [20–22], based on natural scene statistics (NSS) [23],
MANIQA [24] and TOPIQ [25], leading neural network-based NR-IQA
methods, demonstrate the advancements in this field.

Computer simulations show a growing gap between perceptual
quality and evaluation results for thermal images, indicating the need
for objective metrics aligned with human perception. Also, there is a
lack of diversity and annotation in thermal image datasets for given
applications, which impacts the robustness and generalizability of qual-
ity measures. The single thermal image quality assessments such as
EME [26], DMTE, DIMTE, and MDIME metrics [27], and BDIM [28]
metrics use human visual system attributes to evaluate thermal image
quality. Nevertheless, these methods face challenges in accurately iden-
tifying distortions in thermal images, such as noise and blur. Current
thermal image quality measures mainly target specific local features
within confined areas. While global metrics highlight overall image
contrast, they may neglect intricate details. Conversely, local metrics
can overlook the comprehensive image context and fail to account for
certain distortions characteristic of thermal images.

Given the unique challenges of thermal imaging technology, such as
the high background temperatures, minimal variance between objects
and the background, and the scarcity of methods explicitly designed
for thermal applications, new measures are needed to bridge the gap
between objective representation performance and the inherent char-
acteristics of thermal images. These challenges may revolve around
answering the following critical questions: How well can conventional
visual IQA methods evaluate thermal image processing algorithms?
How closely do these methods reflect the human perception of qual-
ity in thermal images? How can they be applied in other infrared
thermography (IRT) applications?

This paper addresses these challenges by introducing a novel ther-
mal image quality assessment method that combines local and global
analysis for accurate image quality predictions without reference im-
ages. Our study’s main contributions are:

1. Blind Single Thermal Image Quality Measures: We develop
local, global, and combined metrics for assessing thermal image
quality.

2. Strong Correlation with Mean Opinion Score (MOS): The
proposed methods correlate well with MOS and work effec-
tively under various experimental conditions, including image
enhancements and thermal image distortions like noise and
blurring.

3. Thorough Evaluation of Existing Metrics on publicly accessi-
ble databases, including solar panels, thermal images of indus-
trial equipment (such as Induction Motors and Transformers),
and multispectral object detection datasets: We perform both
qualitative and quantitative evaluations of current thermal im-
age quality metrics using real-world images, including photo-
voltaic systems, motors, and vehicles. Our approach has proven
highly effective, aligning with human perception of a good
image. Additionally, we investigate the correlation between our
quality assessments and human ratings using thermal image
databases, showcasing the efficacy of our approach.

The paper is organized as follows. Section 2 introduces related
works on thermal image quality assessment. Section 3 describes the
details of the presented method. Section 4 gives computer simulation
results and analysis. Finally, Section 5 concludes the work.

2. Related work

Image quality assessment (IQA) is a critical issue in image process-
ing, with applications across various domains [29,30]. As mentioned
above assessing image quality is essential for image restoration, com-
pression, transmission, and decolorization tasks. A complete list of NR
thermal image quality assessment techniques and their definitions is
provided in Table 1. Studies indicate that developing and implementing
thermal image quality measures presents several challenges due to
thermal imaging technology’s unique characteristics and complexities.
Key challenges include:

• The difficulty of obtaining reliable ground truth references for
thermal images prevents direct comparison and assessment of
quality.

• The influence of subjective human perception on thermal im-
age quality assessment can vary among observers due to dif-
ferent criteria, expertise, environmental factors, and application
contexts, which highlights the necessity of using opinion score
distribution [31,32].

• The challenge of accurately quantifying the temperature varia-
tions in thermal images requires careful calibration.

• Thermal images have lower contrast and fewer details than
visible-light images, which challenges the assessment of sharpness
and clarity. Existing quality metrics for visible-light images may
not apply to thermal images.

• Thermal imaging is sensitive to environmental conditions such as
ambient temperature, humidity, and the distance from the object
being imaged. Integrating these variables into quality assessment
is complex but essential for accurate evaluation.

• Thermal images can be affected by various types of distortions,
including Gaussian noise, Poisson noise, salt-and-pepper noise,
and blurring [23,33]. These distortions can arise from sensor
imperfections, electronic interference, environmental conditions,
or limitations in the imaging system. Addressing these issues
is crucial for ensuring the accuracy and reliability of thermal
imaging applications.

• There are few thermal image assessment algorithms, such as EME,
DMTE, DIMTE, and MDIME [27], compared to visible light image
assessment algorithms, such as BRISQUE, NIQE, PIQE, and others.
This limits the choice and comparison of different thermal image
quality measurement methods.

To address these challenges, robust approaches tailored to the
unique characteristics of thermal images are needed. These approaches
should include both local and global measures of the image. Local
measures evaluate the quality of specific regions or features within the
image, while global measures consider the overall quality of the entire
image. Combining local and global measures enables a comprehensive
evaluation of the image’s fidelity and utility for specific applications.
Moreover, developing a thermal image quality measure involves de-
signing suitable algorithms or models that capture relevant features,
analyze statistical properties, or consider human perceptual factors. The
measure should be robust, computationally efficient, and correlate well
with human subjective evaluations or ground truth references.

3. Proposed thermal image quality metrics

This section introduces new metrics designed to evaluate both local
and global quality aspects of thermal images, along with a combined
metric for comprehensive assessment. As previously noted, traditional
no-reference image quality metrics like BRISQUE and NIQE, primarily
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Table 1
Summary of previous studies on thermal and related image quality assessment.
Measure Definitions

EME [26] Measure of Enhancement (EME) measures the contrast based on modified Weber’s law, which is defined as the average of the local maximum and
minimum grayscale intensities ratio in each sub-block.

EME (𝜔) = 1
𝜀 ε𝜗

𝜀
⌋

𝜛=1

𝜗
⌋

𝜚=1
20 log

⌈

⌉

𝜔max
{𝜍,𝜑
𝜛,𝜚

⌉

𝜔min
{𝜍,𝜑
𝜛,𝜚 + 𝛻

}

(1)

where [𝜔min]𝜍,𝜑𝜛,𝜚 and [𝜔max]𝜍,𝜑𝜛,𝜚 denote the local minimum and maximum intensity level in each 𝜍 ε 𝜑 local block. 𝛻 represents a constant to avoid the
calculation error due to a logarithmic operation.

DMTE [27] The measure is based on the integration of the human visual system and a density-based measure.

DMTE (𝜔) = 1
𝜀 ε𝜗

𝜀
⌋

𝜛=1

𝜗
⌋

𝜚=1

⌉

𝜕ℵ
{𝜍,𝜑
𝜛,𝜚

⌉

𝜕ℶ
{𝜍,𝜑
𝜛,𝜚

log
⌈

⌉
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{𝜍,𝜑
𝜛,𝜚

⌉

𝜕ℶ
{𝜍,𝜑
𝜛,𝜚

}

(2)

where [𝜕ℵ]𝜍,𝜑𝜛,𝜚 and [𝜕ℶ ]𝜍,𝜑𝜛,𝜚 are the local darkness and brightness density in each 𝜍 ε 𝜑 local block. ℷℸ is a probability density function.
⌉

𝜕ℵ
{𝜍,𝜑
𝜛,𝜚 =

⊳
⌋

ℸ=1
ℷℸ ÷

𝜍ε𝜑
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ℸ=1
ℷℸ;

⌉

𝜕ℶ
{𝜍,𝜑
𝜛,𝜚 =

𝜍ε𝜑
⌋

ℸ=⊳+1
ℷℸ ÷

𝜍ε𝜑
⌋

ℸ=1
ℷℸ (3)

DIMTE [27] This measure is based on integrating both the intensity and density of an image. This measure includes features, a human visual system, an information
system, and a distribution-based measure.

DIMTE (𝜔) = 1
𝜀 ε𝜗

𝜀
⌋

𝜛=1

𝜗
⌋

𝜚=1
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⋛
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}2

(4)

where [𝜔min]𝜍,𝜑𝜛,𝜚 and [𝜔max]𝜍,𝜑𝜛,𝜚 denote the local minimum and maximum intensity level in each 𝜍 ε 𝜑 local block.
MDIMTE [27] This measure is a local contrast measure of enhancement. It is constructed based on DMTE, DIMTE, and EME measures.

MDIMTE (𝜔) = 1
𝜀 ε𝜗

𝜀
⌋

𝜛=1

𝜗
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𝜚=1

⌉
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(5)

where [𝜔ℵ]𝜍,𝜑𝜛,𝜚 and [𝜔ℶ ]𝜍,𝜑𝜛,𝜚 represent the local darkness and brightness intensity level, respectively.
BDIM [28] Block Distribution-Based Information Measure (BDIM) is a thermal image quality metric based on Human Visual System (HVS) attributes such as local

resolution, contrast, and sharpness.
BDIM(𝜕, 𝜔) = 1

𝜀 ε𝜗

𝜍
⌋

𝜛=1

𝜑
⌋

𝜚=1

1
⦃ [𝜕min]𝜍,𝜑
[𝜕min]𝜍,𝜑+[𝜕max]𝜍,𝜑

⦄

⟨

[𝜔min]𝜍,𝜑𝜛,𝜚

[𝜔min]𝜍,𝜑𝜛,𝜚 +[𝜔max]𝜍,𝜑𝜛,𝜚

⟩2
+ 𝛻

(6)

where 𝜕min and 𝜕max respectively denote the minimum probability density value and the maximum probability density value in each local tile [𝜍, 𝜑],
[𝜔min]𝜍,𝜑𝜛,𝜚 and [𝜔max]𝜍,𝜑𝜛,𝜚 represent the minimum intensity value and the maximum intensity value in each local tile [𝜍, 𝜑], respectively, and c refers to an
offset value

BRISQUE [20] The Blind or no-reference Image Spatial Quality Evaluator (BRSIQUE) is a model trained using a database of images that have known distortions, which
limits its ability to evaluate images with different types of distortions. Additionally, BRISQUE is designed to be opinion-aware, as it relies on subjective
quality scores that are associated with the training images.

NIQE [21] Natural Image Quality Evaluator (NIQE) is a quality evaluator that uses a database of pristine images for training but can still measure the quality of
images with arbitrary distortion. It is designed to be opinion-unaware and does not rely on subjective quality scores.

PIQE [22] The Perception-based Image Quality Evaluator (PIQE) method is an unsupervised and opinion-unaware algorithm that does not rely on a pretrained
model to evaluate image quality. It can assess the quality of images with arbitrary distortion. PIQE approach estimates distortion in individual blocks of
the image and calculates the quality score based on the local variance of perceptibly distorted blocks.

MANIQA [24] MANIQA, or Multi-dimension Attention Network for NR-IQA, is a metric designed to improve the accuracy of assessing image quality, particularly for
GAN-based distortion. It utilizes ViT for feature extraction and introduces attention mechanisms (TAB and SSTB) to enhance global and local interactions.

TOPIQ [25] TOPIQ is an IQA method inspired by the global-to-local processing mechanisms of the human visual system, emphasizes the crucial role of semantic
information in guiding the perception of local distortions. TOPIQ utilizes a heuristic top-down network called the Coarse-to-Fine Network (CFAN), which
propagates multi-scale semantic information to lower-level distortion features. Essentially, this approach leverages high-level semantics to guide the IQA
network, allowing it to focus on semantically significant regions of local distortion.

trained on natural color images, often fail to assess contrast enhance-
ment in thermal imagery accurately. Table 2 illustrates the performance
of different image quality metrics in evaluating original and contrast-
enhanced thermal infrared images. BRISQUE and NIQE metrics, which
generally favor images with lower scores, surprisingly identify the
original images (a, c) as having higher quality than their contrast-
enhanced counterparts (b, d). In contrast, the LGTA metric, where
higher scores indicate better quality, accurately recognizes the superior
quality of the contrast-enhanced images. This alignment with human
visual perception suggests that LGTA is more robust regarding the
effects of contrast enhancement and better captures the perceptual
benefits of this image-processing technique. This makes it a valuable
tool for evaluating image enhancement techniques’ effectiveness and
optimizing image processing workflows in applications where visual
clarity and information content are critical. A subsequent section will
discuss the LGTA metric in more detail, including its underlying princi-
ples and advantages over traditional metrics in the context of TIR image
analysis.

Typically, thermal image quality measures assess the clarity and
contrast within small blocks within an image. These measures con-
sider the combination of these factors to evaluate the overall quality
of thermal images. It is important to note that some state-of-the-art
metrics, such as BDIM and DMTE, mainly operate as local metrics,
relying heavily on the intensity information within blocks of the image.
In contrast, recent NR image quality metrics, exemplified by MANIQA,
adopt a more holistic approach by integrating both local and global fea-
tures using transformers and attention mechanisms, thereby achieving
superior performance. While effective in some scenarios, these metrics
may overlook the impact of various thermal image distortions, such as
noise introduced during image acquisition (e.g., sensor limitations or
environmental factors). The necessity for specific metrics in the thermal
imaging domain is highlighted by challenges related to the shortage of
datasets, particularly those lacking perceptual scores for Thermal IQA.
These challenges include varied distortions and restricted availability.
Under such circumstances, current measures might not provide thor-
ough insights into the quality of thermal images, highlighting the need
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Table 2
Comparison of BRISQUE, NIQE, and LGTA metric on thermal images and their enhanced versions. Note: Higher values of LGTA indicate better
quality, while the opposite is true for BRISQUE and NIQE.

for more versatile and robust metrics explicitly designed for thermal
imaging.

We present new metrics for both local and global quality assessment
of thermal images and the combined metric.

3.1. Local and global thermal IQA

The local thermal quality metric is determined through the follow-
ing steps:

1. The image is divided into k-by-k blocks.
2. The equations presented below are applied to these blocks using

block-dependent local mean thresholds.

ℸϑ =
⌈
⌉

max
⟪

𝜔⊲
⟫{𝜍,𝜑 + 1

⌉

min
⟪

𝜔⊲
⟫{𝜍,𝜑 + 2

}0

; 𝜔⊲ =
❲

𝜔𝜛,𝜚 ϖ 𝜔𝜛,𝜚 ∱ 12
❳

ℸ𝜍,𝜑 = ℸϑ cos
⟪

log
⟪

log
⟪

ℸϑ + 1⟫⟫ + 1⟫
(7)

3ϑ =
⌈
⌉

max
⟪

𝜔4
⟫{𝜍,𝜑 + 1

⌉

min
⟪

𝜔4
⟫{𝜍,𝜑 + 2

}0

; 𝜔4 =
❲

𝜔𝜛,𝜚 ϖ 𝜔𝜛,𝜚 > 12
❳

3𝜍,𝜑 = 3ϑ cos
⟪

log
⟪

log
⟪

3ϑ + 1⟫⟫ + 1⟫
(8)

where 12 is the mean pixel value of the (𝜍, 𝜑) block, 0 is a
parameter (for example, 0 = 1, 0 > 1 or 0 < 1), and max() (min())
function calculates the third maximum (minimum) value in the
block if possible.

3. The Local Thermal Assessment (LTA) is then computed:

⊲5 6 = 1
𝜀 ε𝜗

𝜀
⌋

𝜍=1

𝜗
⌋

𝜑=1

⟪

ℸ𝜍,𝜑 + 3𝜍,𝜑
⟫

(9)

Motivation for Introducing the Local LTA Measure: Capturing local
variations and subtle details is crucial for accurate quality assessment in
thermal image analysis. Traditional global metrics often overlook these
nuances, leading to potentially misleading evaluations. To address this,
we introduce the LTA metric, designed to provide a fine-grained image
quality assessment by focusing on local image characteristics. Key
Features of LTA:

• LTA utilizes the ratio of the third highest and lowest intensi-
ties (3rd-order statistic) within each image block. This approach
minimizes the influence of noisy pixels, ensuring a more reliable
assessment, particularly in scenarios where noise is prevalent.
This strategy aligns with the modified Weber’s law principles,
which account for the human visual system’s sensitivity to relative
intensity differences [34].

• LTA employs adaptive thresholding to enhance further noise re-
silience, Pixels within each block are categorized into two groups
(𝜔⊲ and 𝜔4 ) based on their mean values, creating dynamic thresh-
olds that adjust to the local image content.

• The LTA metric prioritizes evaluating local features within ther-
mal images. Analyzing intensity variations within individual
blocks captures subtle details and textures that global metrics
might overlook.

• Mathematical Formulation: The LTA metric incorporates a cosine
function transformation to map the intensity ratios to a perceptual
quality scale. This transformation, represented by ℸϑ and 3ϑ, is
then calculated by multiplying the ratio by cos(log(log(7ℸ⊳𝜛8+ 1) +
1)), ensuring that the metric aligns with human visual perception,
where small intensity differences are more noticeable in darker
regions. The function is key in bridging raw intensity data with
human perception in thermal image quality assessment. It intro-
duces non-linearity to mimic human visual sensitivity, making
subtle differences in darker regions more noticeable and enhanc-
ing the perceptual relevance of thermal images. Additionally, by
compressing intensity values, the function reduces the influence
of noise and highlights local features, ensuring a more accurate
and robust evaluation of image quality.

Fig. 1 illustrates how the LTA metric highlights local features and
variations, providing a more nuanced understanding of image quality
than global metrics. LTA enables a more accurate and comprehensive
evaluation of thermal image quality by emphasizing subtle details,
reducing noise impact, and focusing on local features.

We also present a novel parameter-independent Global Thermal
Assessment (GTA) quality metric:

𝜗 9 =
.⊳,

⟪

𝜔.
⟫

⦃

1 + /

/

/

.⊳,
⟪

𝜔.
⟫

ϱ .⊳,(𝜔)//
/

⦄

< 5 6 = 𝜗 9
ℏ𝜀
𝜛=1ℏ

𝜗
𝜚=1𝜕𝜛,𝜚 log2

⟨

log2
⟨

𝜕𝜛,𝜚
𝜕𝜛⋛𝜕𝜚

+ 1
⟩

+ 1
⟩

(10)

where 𝜕𝜛, 𝜕𝜚 , and 𝜕𝜛,𝜚 are the pixel’s probability mass function (PMF)
values in the current row, column, and whole image, respectively. The
𝜗 9 quantifies the noise level in the image, where .⊳,

⟪

𝜔.
⟫

represents
the standard deviation of the smoothed image 𝜔., and .⊳,(𝜔) represents
the standard deviation of the original image 𝜔 . Our experiments employ
an edge-preserving bilateral filter to smooth the image. However, it is
worth noting that other smoothing algorithms, such as median filtering
or Gaussian blur, can also be utilized for faster execution when re-
quired. The choice of smoothing technique may depend on the specific
application and computational considerations.

Motivation for Introducing the GTA Measure: The GTA measure com-
prehensively evaluates image quality by integrating 2D image his-
tograms with column-wise and row-wise histograms. The 2D histogram
captures the overall intensity distribution, while the column-wise and
row-wise histograms reveal spatial variations, enabling a deeper under-
standing of image quality by considering global characteristics.

This method is robust to spatial shifts and rotations, common chal-
lenges in image analysis because including column-wise and row-wise
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Fig. 1. Visualization of the LTA metric without averaging. The first row shows the original thermal images. The second row displays the images of normalized pixel values used
in the metric calculation. It illustrates how the LTA metric highlights local features and variations, providing a more nuanced understanding of image quality than global metrics.

histograms mitigates the sensitivity of traditional 2D histograms to
such transformations. GTA’s enhanced sensitivity to specific image
degradations—such as blur, noise, and contrast distortions—is par-
ticularly valuable for thermal imaging, which often involves unique
image characteristics and degradations. Its adaptability to detect these
nuances makes GTA an effective tool for quality assessment in thermal
imaging applications.

3.2. Combined thermal IQA

To incorporate the thermal image’s local and global features, we
define a combined Local and Global Thermal Assessment (LGTA) metric
as a linear combination of LTA and GTA.
⊲< 5 6 = > ⋛ ⊲5 6 + ⋆ ⋛ < 5 6 (11)

where > and ⋆ are parameters indicating the relative importance of
local and global metrics in the combined LGTA metric. By default,
both parameters are set to 0.5, reflecting an equal weighting of local
and global metrics. However, they can be optimized based on specific
image characteristics and classes, allowing for tailored adjustments to
suit different image types and applications.

The monotonic nature of a quality metric is a crucial attribute,
meaning that it should either increase or stay consistent as the image
quality improves. In Fig. 2, the enhancement results of a few thermal
images are depicted, showcasing five varying degrees of enhancement.
The graphs presented in the same figure display the metric values for
different enhancement parameters. It is obvious that LTA, GTA, and
LGTA measures exhibit a growth pattern as visibility and contrast in
the results improve, thus establishing them as quality metrics with
monotonic characteristics.

Although LGTA effectively combines the strengths of LTA and GTA,
it is essential to recognize that each component metric exhibits sen-
sitivity to specific distortions. As Table 3 demonstrates, LTA scores
tend to increase in the presence of Gaussian noise. At the same time,
GTA is more sensitive to significant blur distortions due to its inherent
limitations in detecting delicate local structures. The Pearson rank
correlation between LTA and GTA is negative in both cases: ϱ0.775
for increasing noise distortion and ϱ0.005 for blur. This indicates an
opposite relationship between local and global features under these
distortion conditions. Despite these individual sensitivities, LGTA con-
sistently assigns the highest score to the undistorted original image,
reinforcing its reliability as a comprehensive image quality assessment
metric. Further investigations into the performance of these metrics
under various distortion types will be presented in Section 4.

Our proposed approach integrates local and global features to create
a robust thermal image quality assessment technique. This method’s
distinctive strength lies in its ability to emulate the human visual

system’s perception by combining global scene understanding with
detailed local analysis. This holistic approach enables a more accurate
and comprehensive evaluation of thermal images.

4. Results and discussion

4.1. Datasets

Addressing the essential role of datasets in computer simulations
and validation, we recognize a notable gap in available datasets for
thermal image quality assessments, particularly those with pre-existing
image scores for validation and experimentation. Consequently, our
methodology involves the careful selection of thermal image datasets,
supplemented by an in-depth user study designed to collect the requi-
site image scores for robust validation. Below, we present the datasets
we utilized, providing insights into their specific attributes and rele-
vance to our research objectives.

• Photovoltaic System Thermal Images [36]. This dataset comprises
277 thermographic aerial images obtained using a Zenmuse XT
IR camera with a 7–13 ςm wavelength, mounted on a DJI Ma-
trice 100 quadcopter drone. In addition to the images, it in-
cludes environmental data such as temperature, wind speed, and
irradiance.

• Thermal Image of Equipment (Induction Motor and Transformer)
[37]. This dataset contains thermal images (IRT) to monitor the
condition of electrical equipment, specifically Induction Motors
and Transformers. The defects present in this dataset are artifi-
cially generated internal faults and are not a result of external
factors or any failure in the initial setup components. The thermal
images were acquired using a Dali-tech T4/T8 infrared thermal
image camera at the Electrical Machines Laboratory workbench
under an ambient temperature of 23⋜.

• The Multi-Spectral Object Detection dataset [35] consists of multi-
spectral images designed for object detection in traffic scenarios.
These images encompass RGB, near-infrared, middle-infrared, and
far-infrared spectra, offering comprehensive data for detection
tasks. The dataset includes objects that might not be visible in
RGB images but can be detected in other spectra, such as far-
infrared. It was specifically created to train a multispectral object
detection system.

These datasets collectively provide a rich and diverse set of ther-
mal imagery for various applications, including photovoltaic system
analysis, electrical equipment condition monitoring, and advanced
autonomous vehicle research. In our experiments, we utilized these
datasets as our primary sources for conducting a user study, generating
enhancements, and introducing distortions to evaluate the effectiveness
of our thermal metrics.
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Fig. 2. The proposed metrics consistently ascend with increasing degrees of enhancement.
Source: The images are taken from the dataset described in [35].

Table 3
Ablation study of the LGTA metric. This table presents the performance of LTA, GTA, and LGTA under various distortions, including Poisson noise
and box blur. It highlights each metric’s specific sensitivities and overall effectiveness, demonstrating the complementary nature of the extracted
LTA and GTA features. For example, GTA excels in handling noisy images, while LTA is particularly effective for blurry images. Additionally,
the negative Pearson correlation between LTA and GTA (ϱ0.775 for noise and ϱ0.005 for blur) underscores their opposing sensitivities to these
distortions. The combined LGTA measure, leveraging the strengths of both LTA and GTA, provides a comprehensive evaluation of thermal image
quality.
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Table 4
Average correlations ranks between thermal image quality metrics and user scores.
Metric type Quality Metric Kendall rank Pearson rank

Local

EME 0.510970 0.481541
DMTE 0.518617 0.549078
DIMTE 0.478970 0.571109
MDIMTE 0.471915 0.521113
BDIM 0.482000 0.570710
LTA 0.438262 0.448493

Global and Combined

BRISQUE 0.020295 0.105794
NIQE 0.183993 0.172005
PIQE 0.067862 ϱ0.026669
MANIQA 0.094105 0.033886
TOPIQ 0.293672 0.318487
GTA 0.702616 0.704283
LGTA 0.758616 0.730985

4.2. Perceptual validation of proposed metrics based on thermal image
enhancement methods

For the user study, we prepared the results of five image enhance-
ment methods (Arici et al. [38], Lee et al. [39], Huang et al. [40],
Rahman et al. [41], and Cao et al. [42]) on images three datasets.
We selected widely-used histogram and gamma correction-based image
enhancement methods that are applicable to both visible and thermal
imagery [43]. Our evaluation involved the participation of 20 observers
who rated 125 thermal images on a scale of 1 to 5, with 5 representing
the most superior enhancement and 1 indicating the least satisfac-
tory outcome. Additionally, the observers were instructed to carefully
examine any image distortions following the enhancement process.

To assess the relationship between our newly developed thermal
objective metrics and human quality judgments, we employed both
Kendall’s and Pearson’s correlation coefficients. These statistical meth-
ods are widely used in image quality assessment to establish corre-
lations between objective metrics and human evaluations [44]. The
Pearson correlation coefficient quantifies the linear relationship be-
tween an objective metric and human judgments. A high Pearson
correlation coefficient signifies that the objective metric is effective at
predicting human judgments accurately. In contrast, the Kendall tau
rank correlation coefficient assesses the strength and direction of the
association between two ranked variables. It focuses on the similarity in
the order of observations rather than the specific values, which makes
it resilient to non-linear relationships and outliers. These coefficients
range from ϱ1 to 1: positive values indicate a direct relationship,
negative values suggest an inverse relationship, and zero indicates no
monotonic association. Using both Pearson and Kendall correlation
coefficients will better understand the relationship between the objec-
tive metric and human judgment. The results from both correlation
coefficients give a holistic picture. With a high Pearson correlation co-
efficient, you can ensure that your objective metric has good prediction
accuracy. With a high Kendall correlation coefficient, you can ensure
that the relationship between the objective metric and human judgment
is monotonic.

We collected Mean Opinion Scores (MOS) from all 20 observers
for each image under evaluation to further analyze the relationship
between the objective metrics and human judgments. MOS is a well-
established practice in the IQA of natural images due to its ability to
capture human perceptual responses and preferences directly, provid-
ing a reliable measure of image quality [45,46]. However, there is a
notable lack of established thermal image scores, which prompted us to
conduct our experiment. We focus on MOS because it is simple, easy to
understand and implement, widely accepted, and used in various fields,
making it a standard benchmark [47]. It directly reflects the human
perception of quality. On the other hand, Opinion Score Distribution
(OSD) provides a more detailed view by showing the distribution
of individual ratings rather than just the average, highlighting the

variability and consensus among raters [31]. However, OSD is more
complex to analyze and interpret than MOS, requires handling and
processing more data points, and may provide more information than
necessary for some applications. Therefore, while we plan to use OSD
in the future, our current focus remains on MOS due to its simplicity
and widespread acceptance.

These subjective scores were then used to calculate the average
Kendall and Pearson ranks between the subjective scores and the
thermal IQA metrics, detailed in Table 1. The metric calculations were
conducted using default parameter values, with a consistent block size
of 5 applied to all local metrics. The results of these calculations are
presented in Table 4. Given the limited availability of established global
feature-based thermal image quality evaluation methods, our primary
comparisons are made with widely adopted methods. As anticipated,
the NIQE and PIQE metrics exhibited lower correlations with human
judgments. These methods, based on statistical and supervised learning
approaches, are commonly used for general image quality evaluation,
even though they are not explicitly designed for thermal images. Local
metrics such as EME, BDIM, and LTA also produced similar results,
likely due to their design, which focuses on adjusting parameters only
within local blocks of the image. Similarly, MANIQA and TOPIQ,
underperform in both metrics compared to our proposed methods, GTA
and LGTA. Specifically, the Kendall and Pearson correlation coefficients
between the quality metrics and user scores for TOPIQ are 0.29 and
0.32, respectively. In contrast, our proposed LGTA method achieves sig-
nificantly higher correlations, with Kendall’s Tau at approximately 0.76
and Pearson’s correlation at 0.73. This notable difference highlights our
framework’s ability to align with human subjective quality assessments
more accurately and provides practical insights for improving thermal
image quality evaluation. The values of proposed metrics and user
ranking on five enhanced images are shown in Table 5. In terms of
monotonicity, all three metrics exhibit strong correlations with user
ranks in the first example. However, in the second example, LTA has
a higher Kendall rank than GTA and LGTA. This discrepancy might
stem from relatively imprecise user rankings, mainly since the visual
outcomes are similar.

4.3. Qualitative evaluation of proposed metrics using different thermal
image distortions

In this section, we assess the proposed metrics by applying them to
a range of distorted thermal images. Building upon the approach of Li
et al. [48], we generate a diverse set of distortion scenarios, including
Salt and Pepper, Gaussian, Poisson, and Blurring, and analyze how our
metrics perform under these conditions. Detailed descriptions of the
experiments and results are provided below.

• Salt and Pepper Noise: This noise introduces randomly isolated
dark and bright pixels into thermal images, which can occur due
to sensor limitations or environmental factors in thermal imaging.
We vary the noise density from 0.01 to 0.1 and employ our
metrics to measure the quality scores of the distorted images.

• Gaussian Noise: Gaussian noise simulates the noise commonly
encountered in thermal images, often originating from sensor
imperfections or electronic interference.

• Poisson Noise: We apply Poisson noise to the images to replicate
the inherent variability in the number of photons detected in
thermal imaging. This noise is particularly relevant for simulating
low-light conditions.

• Blur : Introduces a form of distortion, whether through Gaussian
or Box blurring, which can result from various factors such as
motion or defocusing during image capture. This encompasses
common scenarios in thermal imaging where blurring effects may
arise due to real-world conditions and imaging challenges.
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Table 5
User scores and LGTA values for several thermal image enhancement methods. LGTA is calculated with different values of > and ⋆ parameters
[38–42].

Table 6
Different metric values for artificially generated four levels of salt and pepper noise.

For each type of distortion, we systematically corrupted a subset
of the thermal images in our dataset at varying noise levels. These
distorted images were then evaluated using our proposed metrics, along
with state-of-the-art ones like BDIM and DMTE, for comparison. The
objective was to observe how well the metrics could assess the image
quality in the presence of these specific distortions.

Table 6 presents a set of four distinct thermal images, each ex-
emplifying a different level of Salt and Pepper noise, spanning from
minimal noise to severe distortion. These visual examples effectively
depict the diverse noise levels applied to the thermal images. We ob-
served that: the LGTA metric consistently demonstrated robustness and

accuracy across all types of distortions, showing a consistent decrease
as the level of distortion increases. In contrast, established metrics
such as BDIM, DMTE, and MANIQA displayed limitations in effectively
assessing image quality under certain distortion types.

Fig. 3 illustrates how our proposed LGTA metric responds to increas-
ing distortion density across various distortion types, including noises
and blurring. The consistent trend observed with our metric is note-
worthy. As the distortion density intensifies in thermal images, LGTA
demonstrates the highest correlation, consistently decreasing. This pat-
tern underscores its exceptional sensitivity in evaluating thermal image
quality amidst rising distortion levels, emphasizing its practical utility
in challenging conditions.
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Fig. 3. The behavior of the proposed LGTA metric under varying degrees of distortions.

4.4. LGTA-based thermal image enhancement

In addition to assessing thermal image quality and selecting optimal
enhancement methods, quality metrics are valuable for optimizing
parameters in simple algorithms. We employed the novel LGTA method
and Genetic Algorithms to optimize CLAHE parameters to enhance
thermal image quality [49]. The optimization steps are described in
Algorithm 1. Fig. 4 illustrates the outcomes of this optimization process
on solar panel images. We utilized a grid size of (3, 3) and optimized the
‘clip limit’ parameter within the range [0, 50]. The enhanced images
clearly show that hot spot defects on panels are much more visible,
which can be beneficial for defect detection algorithms and thermal
dataset augmentation.

5. Conclusion

In this paper, we presented a novel method for assessing the quality
of thermal images, addressing the unique challenges posed by infrared

thermal imaging technology. Inspired by the human vision system,
our approach harmonizes local and global data to deliver accurate
image quality predictions without the need for reference images. The
primary contributions of this work include the development of innova-
tive local, global, and hybrid thermal quality assessment methods, an
experimental analysis of the blind thermal IQA measure’s applicability
to solar panel images, and a comprehensive evaluation of traditional
IQA methods applied to publicly accessible thermal image databases.
Our extensive computer simulations demonstrated that our method
outperforms state-of-the-art approaches and closely aligns with human
perception of image quality. By investigating the correlation between
our quality assessments and human ratings, we showcased the effi-
cacy of our approach. These methods are valuable for evaluating and
optimizing thermal imaging systems and comparing different image
processing algorithms regarding their impact on image fidelity and
utility.

Future work will extend the proposed methods to other thermal
quality measures and imaging applications, such as image enhance-
ment, segmentation, and fault detection. Using the proposed thermal
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Fig. 4. Optimal enhancement of thermal images using the LGTA metric and CLAHE method. The first row displays the source images, their enhanced versions are shown in the
second row, and optimization graphs are displayed in the third one.

Algorithm 1 Optimal thermal image enhancement using Genetic
Algorithm with a novel cost function
Inputs: 𝜔. = source image
Initialization: population = 𝜑, maximum number of iterations = 𝜗 ,
⊳ = 0
Function objective(𝜕1, ..., 𝜕𝜑)

𝜔≨ = Enhance(𝜕1, ..., 𝜕𝜑)
m = CalculateLGTA(𝜔≨)
return m

EndFunction
Generate the initial number of 𝜑 chromosomes
Compute the fitness of each chromosome using the objective function
while ⊳ < 𝜗 do
Select a pair of chromosomes based on fitness
Apply crossover on the selected pair
Apply mutation operation
Replace the old population with the newly generated one
⊳  ⊳ + 1

end while
Return parameters with the best fitness
Output: 𝜕1, ..., 𝜕𝜑 parameters

image quality measurement, we plan to develop an efficient method to
display only the temperature range of electrical equipment’s infrared
thermal images. This will improve the accuracy and reliability of tasks
in energy-related imaging scenarios. Additionally, we will conduct
experiments on multispectral thermal images and diverse datasets to
comprehensively evaluate the proposed methods and their applicability
in various settings. Furthermore, we plan to focus on UAV imaging
applications in critical areas such as volcanism, detecting temperature
changes as potential indicators for forecasting future events, and in-
specting industrial electromechanical elements. These applications can
play a crucial role in preventing system malfunctions and improving
safety and reliability.
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