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Abstract: Identifying and delineating suspicious regions in thermal breast images poses significant
challenges for radiologists during the examination and interpretation of thermogram images. This pa-
per aims to tackle concerns related to enhancing the differentiation between cancerous regions and the
background to achieve uniformity in the intensity of breast cancer’s (BC) existence. Furthermore, it
aims to effectively segment tumors that exhibit limited contrast with the background and extract rel-
evant features that can distinguish tumors from the surrounding tissue. A new cancer segmentation
scheme comprised of two primary stages is proposed to tackle these challenges. In the first stage,
an innovative image enhancement technique based on local image enhancement with a hyperboliza-
tion function is employed to significantly improve the quality and contrast of breast imagery. This
technique enhances the local details and edges of the images while preserving global brightness and
contrast. In the second stage, a dedicated algorithm based on an image-dependent weighting strategy
is employed to accurately segment tumor regions within the given images. This algorithm assigns
different weights to different pixels based on their similarity to the tumor region and uses a threshold-
ing method to separate the tumor from the background. The proposed enhancement and segmentation
methods were evaluated using the Database for Mastology Research (DMR-IR). The experimental re-
sults demonstrate remarkable performance, with an average segmentation accuracy, sensitivity, and
specificity coefficient values of 97%, 80%, and 99%, respectively. These findings convincingly es-
tablish the superiority of the proposed method over state-of-the-art techniques. The obtained results
demonstrate the potential of the proposed method to aid in the early detection of breast cancer through
improved diagnosis and interpretation of thermogram images.
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1. Introduction

Medical imaging is pivotal in various clinical applications, including early detection, monitoring,
diagnosis, and treatment evaluation of medical conditions [1]. Among these, breast cancer is one of
the most frequently diagnosed cancers in women. Imaging examinations provide valuable information
regarding breast lesions’ size, location, and characteristics, aiding in formulating appropriate treatment
strategies [2]. Breast cancer continues to pose a significant global health challenge. It is the most
generally diagnosed cancer in women, affecting millions worldwide. According to the Global Cancer
Observatory (GLOBOCAN) report, in 2020, the number of new breast cancer cases in both sexes and
all age groups was significant, as shown in Figure 1. Breast cancer’s impact extends beyond an indi-
vidual’s physical healing, influencing their emotional well-being, social dynamics, and overall quality
of life. Early detection is crucial to improving patient outcomes, as it facilitates timely intervention
and appropriate treatment strategies [3].

Figure 1. The total number of newly reported cases in 2020 across all age groups and gen-
ders.

Mammography (MG), a specialized low-dose X-ray imaging technique, is commonly used for rou-
tine breast cancer screening to facilitate early detection. Advancements in medical imaging technology
have significantly contributed to the early detection and diagnosis of breast cancer [4]. However, MG
has its limitations. Dense breast tissue, with a higher proportion of breast and connective tissues than
fat, can make mammogram interpretation challenging, potentially obscuring lesions. This is especially
true for younger individuals with denser breast tissue, rendering screening mammograms less effective
for this group. Certain cancers may go undetected due to their location or breast tissue density. MG
may not accurately identify tumors in specific populations, like many Chinese women with dense or
mixed-type breast density.

To address the challenges and offer viable alternatives regarding dense breast tissue, thermal infrared
imaging (TI) has emerged as a promising and safe diagnostic option. Dynamic thermography, a non-
invasive procedure, has shown potential in detecting lesions in dense breasts, presenting advantages
over mammography and magnetic resonance imaging (MRI) in terms of cost-effectiveness [5].
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Thermal infrared imaging takes advantage of the fact that breast cancer regions often exhibit higher
temperatures than surrounding tissues. Tumors increase metabolic heat and blood perfusion rates, lead-
ing to noticeable temperature differences. This non-ionizing imaging technique captures heat patterns
emitted from the skin surface and can identify abnormal temperature variations between breasts or
within a single breast. Furthermore, it provides valuable information about the size, shape, location,
and depth of the lesion [6–8].

Moreover, other imaging tools such as MG, breast ultrasound, MRI, and breast computed tomog-
raphy (CT) cannot provide skin vascular or metabolic information offered by medical thermology [9].
By utilizing thermal infrared imaging and dynamic thermography, healthcare professionals can offer
an effective and safe alternative for women with dense breasts, providing valuable insights into breast
health without exposing patients to ionizing radiation. Additionally, the clinical application of ther-
mology can aid physicians in understanding breast pathophysiology and, ultimately, enhance patient
outcomes. This advancement holds great promise in improving the early detection and diagnosis of
breast abnormalities, contributing to better patient care and overall outcomes. Finally, breast infrared
imaging (thermology) is a physiologic study that can assess changes in breast tissue by providing ac-
curate and reproducible high-resolution images of skin temperature. This image can be analyzed both
qualitatively and quantitatively for thermovascular mapping and for minute changes in skin heat emis-
sion, respectively. Then, these thermal findings can then be utilized as an assessment tool for breast
health.

Despite its advantages, thermography is not a standalone method for breast cancer detection and
diagnosis. It faces challenges such as low specificity, high false-positive rates, and the influence of
environmental factors on temperature measurements. For reliable and accurate results, standardized
protocols and guidelines must be followed. Therefore, thermography should be viewed as a comple-
mentary tool alongside imaging techniques like MG or MRI. Thermal image processing faces several
challenges due to the unique characteristics and properties of thermal images [10]. The common chal-
lenges are as follows:

1) Thermal cameras often have a lower spatial resolution than visible light cameras, which makes
extracting detailed information and accurately detecting small objects or features challenging.

2) TI is prone to various types of noise and artifacts, such as sensor noise, atmospheric interference,
and non-uniformity, which can degrade the image quality and affect the accuracy of subsequent
processing tasks.

3) TI captures temperature variations and different scenes may have varying temperature ranges. Han-
dling a wide dynamic range of temperatures and accurately mapping them to an appropriate display
scale is also challenging.

4) TI often contains complex scenes with multiple objects at different temperatures. Segmenting and
extracting specific objects of interest from the background can be difficult due to the lack of clear
boundaries and varying thermal signatures.

5) Various environmental conditions, including weather, humidity, and emissivity variations, can in-
troduce distortions and affect the reliability of temperature measurements.
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6) More TI formats, metadata, and processing techniques must be standardized. Different thermal
camera manufacturers may use proprietary formats and processing algorithms, hindering the inter-
operability and compatibility across different systems.

Addressing these challenges requires advanced TI techniques, including noise reduction, segmen-
tation methods, image fusion approaches, and robust thermal image object detection and tracking al-
gorithms. This article aims to overcome these challenges and improve the accuracy and reliability of
thermal image processing.

Table 1 provides a summary of the literature review of existing algorithms employed for segmenting
regions of interest in breast thermograms and images. Each row in the table represents a different
method used, and the columns describe the study’s name, the segmentation techniques utilized, and the
regions that were segmented.

Table 1. Summary of existing BC segmentation techniques and their characteristics.

Work Method used Description Dataset Advantages/limitations

[11] 1997
Unsupervised method for a semi-

automatic segmentation

The objective is to generate ob-

jective measures for assessing the

patient’s cancer risk

No details about the

dataset used

Focuses on asymmetry in heat pat-

terns and “hot spots.” However, per-

spective distortions and body asym-

metry lead to inaccurate comparisons.

[12] 2004

Canny edge detectors used for ex-

ploring (modified Hough transform,

longest connected edges, and edge

density in the breast region).

aims to locate ROI in thermal

images for breast cancer detec-

tion to identify the bottom breast

boundary

21 different grayscale

images

It is adaptable to various breast sizes

and shapes due to the inclusion of

adaptive processes. However, the

method struggles with edge detection

in images lacking strong edge lines

for breast regions, and the HT limited

success and manual parameter tuning

are time-consuming.

[13] 2010 color K-means, and fuzzy c-means

The hotter regions in abnormal

breasts, which indicate potential

tumors

6 thermal cases were

investigated

A good determination of the degree

of malignancy. However, no analysis

is shown for the likelihood of breast

cancer based on these features and

incorporating bio-data from question-

naires.

[14] 2010
Edge detection and Hough transform,

and asymmetry analysis

The paper suggests an automatic

approach through image segmen-

tation and asymmetry analysis

images taken using

IRI4040

Offers a feasible and practical method

for breast cancer diagnosis.

[15] 2012

Hough transform + Canny edge de-

tector and pattern classification (un-

supervised clustering + supervised

learning with feature extraction)

Two main steps are employed:

automatic segmentation and pat-

tern classification

i) Elliott Mastology

Center (Inframetrics)

and ii) Bioyear, Inc.

(Microbolometer

uncooled camera)

Advantages include objective diag-

nosis and early detection potential.

Limitations involve dependence on

dataset quality and the need for a sub-

stantial training set.
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Table 1. Summary of existing BC segmentation techniques and their characteristics. (Con-
tinued)

Work Method used Description Dataset Advantages/limitations

[16] 2014

An improved level set. It involves

anisotropic diffusion-based smooth-

ing

The goal is to enhance and pre-

serve edge information for accu-

rate segmentation of breast tis-

sues

-

The proposed segmentation method

shows good agreement with ground

truth images, achieving an average ac-

curacy of 98% of regional similarity.

[17] 2014
3 image segmentation methods: k-

means, fuzzy c-means, and level set

The level set algorithm is im-

proved for efficient and accurate

segmentation

30 images from various

sources. Cases include

fibrocystic and malig-

nant cases

The level set algorithm proves to

be more accurate, efficient, and ro-

bust for segmentation compared to k-

means and fuzzy c-means.

[18] 2017

Fully automatic segmentation ap-

proach using shape features and Poly-

nomial curve fitting and SVM for de-

tection

The study aims to develop a

CAD system for breast thermo-

gram analysis

80 frontal view/ 40 nor-

mal and 40 abnormal

cases

High accuracy 90%, and specificity

92.5% demonstrate the effectiveness

of the method. However, performance

may be impacted by image quality.

[19] 2019

A Gaussian filter for noise reduction,

and ROI is segmented based on infra-

mammary fold curves and bifurcation

points. Classifiers based on support

vector machine (SVM) with RBF, lin-

ear, and polynomial kernels

The proposed algorithm success-

fully segments the ROI and dis-

tinguishes between left and right

breasts using shape concavity

and convexity

35 normal and 25 ab-

normal frontal breast

thermograms

The proposed methodology demon-

strates high accuracy (95%), sensitiv-

ity (97.05%), and specificity (92.3%)

in detecting. However, as with any

CAD system, there is a possibility of

FP and FN.

[20] 2019

The method combines the breast

blood perfusion (BBP) model, an

adaptive triangular histogram-based

thresholding (ATHT) method, and a

new energy functional-based level set

method (LSM)

MSPSF is incorporated into a

variational level set formulation

thus challenges such as low

contrast, intensity nonuniformity,

noise, and complex background

are addressed

DMR-IR database

The combination of BBP model,

ATHT, and LSM provides an effective

solution to challenging segmentation

tasks in breast thermograms. How-

ever, the performance of the proposed

may still be influenced by factors such

as image quality, and dataset charac-

teristics.

[21] 2019

The method includes identifying the

upper boundary (UB) of the breast us-

ing an arc approximation algorithm

and the lower boundary curve (LBC)

to segment the inframammary fold re-

gion (IFR) of the breast and an IFR

isolation method

Multiple steps, including bound-

ary identification, tracing, and

extrapolation, are employed to

accurately segment the breast re-

gion

DMR-IR database

The proposed method achieves a

high average segmentation accuracy

of 95.75%. However, the study does

not mention the potential challenges

of the proposed, which might require

further investigation.

[22] 2019

The paper proposes a cascaded convo-

lutional neural network (CNN) archi-

tecture

Automated analysis of thermal

images
DMR-IR database

The approach reduces errors and man-

ual work required for segmentation,

speeding up automated diagnosis.
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Table 1. Summary of existing BC segmentation techniques and their characteristics. (Con-
tinued)

Work Method used Description Dataset Advantages/limitations

[23] 2020

The proposed method is called the

Extending Contour Level Set (ECLS)

model, which is a modification of the

region-based level set method

A two-step approach is proposed

to segment breast thermography

images using the ECLS model

in the first step and a new Con-

trolled Chan-Vese (CCV) model

in the second step.

DMR-IR database

The ECLS model is computationally

efficient and less noise-sensitive com-

pared to related segmentation meth-

ods. However, the limitations of the

proposed ECLS and CCV model are

not explicitly discussed.

[24] 2020

The paper proposes a segmentation

based on the Chaotic Salp Swarm Al-

gorithm (CSSA)

The proposed CSSA algorithm

enhances the convergence rate

and accuracy by controlling ex-

ploration and exploitation

DMR-IR dataset

The proposed CSSA algorithm opti-

mizes the quick-shift method param-

eters, leading to improved accuracy in

the segmentation process.

[4] 2020

Features are extracted using first and

second-order statistics, and an artifi-

cial neural network (ANN) is trained

with these features as input for classi-

fication

The proposed focuses on auto-

matic segmentation using color

intensities, thresholding opera-

tors, and local contrast enhance-

ment

DMR-IR dataset

The proposed achieves competitive

accuracy results ranging from 90.17%

to 98.33%.

[2] 2020
automatic segmentation based on re-

gion growing

The proposed framework in-

cludes 3 main stages: image

enhancement, tumor region seg-

mentation, followed by coloring

the segmented region

DMR-IR dataset

The proposed method achieves high

segmentation accuracy 98.8%, out-

performing state of the art methods.

Machine learning algorithms can be used for breast cancer detection, where they learn from labeled
training data that experts annotate with cancerous or non-cancerous regions [2]. These supervised
imaging methods can leverage the computational power of artificial intelligence and medical profes-
sionals’ expertise to advance breast cancer detection. However, these methods also have some limi-
tations and drawbacks that need to be addressed. One of the main drawbacks of supervised imaging
for breast cancer detection is the reliance on labeled data. Collecting data accurately is costly and
time-consuming, requiring expert knowledge and careful annotation of many medical images.

In recent machine learning-based segmentation methods, Acharya et al. [25] employed higher-order
spectral features derived from thermograms in a feed-forward artificial neural network (ANN) classi-
fier and a support vector machine (SVM). This novel approach exhibits a considerable potential for
automating the classification of normal and abnormal breast thermograms, thereby eliminating the re-
quirement for subjective interpretation. In a related investigation, Nicandro et al. [26] utilized Bayesian
network classifiers to identify patients suspected of harboring cancer. Krawczyk et al. [27] devised a
comprehensive methodology integrating three computational intelligence techniques. The ensemble
comprised support vector machines as base classifiers, a neural fuser for amalgamating the individual
classifiers, and a fuzzy measure for evaluating the diversity of the ensemble and eliminating specific
classifiers.

Moreover, biases in the training data can affect supervised imaging techniques. These biases can
stem from various factors, such as demographic and geographical differences in the data sources. Su-
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pervised imaging techniques also have limited adaptability to changing clinical situations and disease
variations. The models learn from specific image features and patterns, which may not cover the range
of variations in real-world cases. This lack of adaptability can lead to either false negatives or false
positives, reducing the accuracy and reliability of the detection system.

The breast cancer detection system typically involves two key steps: image enhancement and seg-
mentation. Image enhancement aims to improve the quality and clarity of the acquired images, thereby
enhancing the visibility of potential cancerous abnormalities. Subsequently, segmentation techniques
are applied to extract and isolate these regions of interest, enabling further analysis and diagnosis. This
combined approach offers the potential to detect breast cancer at early stages, facilitating a prompt in-
tervention and personalized treatment strategies [28]. On the other hand, segmentation plays a critical
role in detecting breast cancer using thermal images. Its accuracy directly impacts the success of the
classification system. Additionally, prior to feeding inputs into CNNs, image preprocessing of breast
thermograms should be performed to facilitate a feature extraction process. Image preprocessing at this
point could include image enhancement, denoising, and segmentation taking regions of interest (ROIs)
of the breast thermograms. Feeding only the ROI portion into further supervised imaging techniques
may accelerate the feature mapping operations in the convolutional layer because only the important
parts of the breast thermograms are learned. Previous studies have shown that accuracy can be in-
creased when the input images are segmented. Therefore, ROI segmentation needs to be targeted. The
segmentation of the breast thermogram must cover all breast tissue and the area nearby the ganglion.
Segmentation methods can be broadly categorized as manual, semi-automatic, and automatic.

Manual segmentation involves human experts manually outlining the regions of interest in the ther-
mal images. This method is time-consuming and subjective, as it heavily relies on the expertise and
experience of the annotator. Semi-automatic segmentation techniques combine manual inputs with
automated algorithms. The algorithm performs the initial segmentation, and then the results are fine-
tuned by human experts. This approach reduces the annotation time while still benefiting from human
expertise. Automatic segmentation methods rely solely on computational algorithms to segment the
breast tissue in thermal images. These algorithms analyze the image data and identify the regions of
interest without human intervention. They are often based on advanced techniques such as machine
learning and computer vision algorithms [29].

Subsequently, Araújo et al. [30] introduced a novel interval symbolic feature extraction method
by employing morphological processing techniques on thermographic images. The efficacy of this
approach was assessed by employing various parametric and non-parametric statistical classification
rules. Ali et al. [31] investigated the necessity of predefining parameters in the data acquisition proto-
col, specifically the distance between the camera and the patient. The resulting segmented images are
presented in a rectangular format, highlighting various breast regions; however, they fail to effectively
identify specific regions associated with breast cancer. Etehadtavakol et al. [32] explored the utiliza-
tion of higher-order spectral invariant features in classifying normal and benign classes by applying
fuzzy c-means and Radon projections. The accuracy of this methodology is dependent upon the se-
lection of appropriate Radon projection angles and slopes. Milosevic et al. [33] employed gray-level
co-occurrence matrices to extract textural information from thermograms and subsequently segmented
the ROIs using the minimum variance quantization technique. It is important to note that this approach
is contingent upon the initial selection of cluster centroids and necessitates prior knowledge of the
number of clusters. Lastly, Sathish et al. [34] proposed a technique that utilizes local energy features
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derived from wavelet sub-bands.
We will use the pre-segmentation step to reduce noise and enhance the image quality, making it

more homogeneous and uniform. Various image processing techniques, such as noise filtering, contrast
enhancement, and normalization, can be applied during this stage. Different methods can be employed
post-segmentation to redefine the initial segmentation results. For instance, neutrosophic sets, which
handle uncertainty in image segmentation, can be used to improve the accuracy of the segmentation.
Moreover, optimized Fast Fuzzy c-mean algorithms, which leverage fuzzy logic principles, can be used
to achieve better segmentation results.

However, despite advancements in segmentation techniques, there are still several challenges in
thermal image segmentation for breast cancer detection. One challenge is noise/artifacts in the thermal
images, which can affect the accuracy of segmentation algorithms. Additionally, individual breast
shape, size, and texture variations can challenge achieving consistent and reliable segmentation results.
Moreover, the need for annotated data for training and evaluating segmentation algorithms in thermal
images limits the development and comparison of different methods.

To address these challenges, ongoing research focuses on developing robust segmentation algo-
rithms that are less sensitive to noise and can handle variations in breast appearance. This research
aims to enhance the prediction of a tumor prognosis using thermal imaging for breast cancer detection.
The main contribution of the paper is listed as follows:

• Novel contrast enhancement algorithms combining local and so-called hyperbolization histogram
equalization algorithms;
• Novel tumor segmentation algorithms using an image-dependent weighting strategy;
• The experimental results on the DMR-IR database have demonstrated that the proposed algorithm

significantly enhances the performance of the state-of-art segmentation algorithms.

The subsequent sections of this paper are structured as follows. Section 2 provides comprehensive
information on the materials and methods. The computer segmentation results are showcased in Sec-
tion 3, including objective and subjective evaluations. In Section 4, the discussion of the experimental
results is presented. Finally, Section 5 presents the paper by summarizing the key discoveries and
proposing future directions.

2. Materials and methods

This section describes the proposed approach, starting with the data collection process. This subsec-
tion presents information about acquiring and selecting breast images from a suitable database. Next,
we explain the methodology of breast cancer detection, describing the proposed technique or algorithm
used in this study. It covers the step-by-step image enhancement procedure, tumor region segmenta-
tion, and breast cancer detection. This subsection aims to understand the methodology used to address
the challenges associated with accurate cancer detection. Finally, we discuss the evaluation metrics
used to assess the performance and effectiveness of the proposed method. Various quantitative metrics
such as accuracy, sensitivity, specificity, and dice coefficient are considered to evaluate the segmenta-
tion and detection results. These metrics play a crucial role in objectively measuring performance and
determining the strengths and limitations of the proposed approach. Figure 2 briefly summarizes the
proposed method for the automated detection of breast cancer using thermography images.
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16794

GROUND TRUTH (GT)

INPUT BREAST 
THERMOGRAM

(POSITIVE CASES)

SEGMENTATIOBN OF 
LEFT / RIGHT BREAST

SEGMENT

OVERLAY 
SEGMENTATION &

SCREENING 

FUSE & ENHANCE

QUALITY MEASUREMENT

PROPOSED 
ALGORITHM

Figure 2. Flowchart of the proposed automated detection of breast cancer using thermogram.

2.1. Data used

In recent years, numerous databases have been established to investigate the diagnostic capabilities
of breast thermography, including Perez [35] and Silva et al. [36], Ann Arbor Thermography [37],
the American College of Clinical Thermology [38], the Thermal imaging lab in the San Francisco Bay
Area [39], Thermography of Iowa [40], and Sunstate Thermal Imaging Center in Australia. Most of the
breast thermograms are from private databases. Our study utilized the publicly available Database for
Mastology Research (DMR-IR) database, which is comprised of personal and clinical data from 287
patients [36]. This database contains (640 ∗ 480) resolution thermal images with a thermal sensitivity
of (40 mK), taken from five different views of the breast: front, right oblique 45◦ (R45), left oblique
45◦ (L45), right lateral 90◦ (R90), and left lateral 90◦ (L90). Additionally, the database includes cor-
responding thermal matrices that provide temperature information for each pixel. The thermal images
were acquired using a FLIR SC620 thermal camera, employing both static and dynamic protocols. The
static protocol involved capturing a single image after allowing the patient to rest for 10 to 15 minutes
to achieve thermal stabilization.

(a) (b) (c) (d)

Figure 3. Sample images depict the breasts of several patients. Tumors exhibiting higher
temperatures are visualized in shades of red or orange, whereas cooler tissues are represented
in shades of green. Breast thermal images downloaded from the DMR-IR database [1, 36].
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Figure 3 compares thermograms depicting normal and abnormal breasts obtained from the DMR
database [36]. These thermal images showcase three patients with distinct medical histories. Figure
3(a) shows a thermogram of a healthy patient without prior screening tests. Figure 3(b) presents a
thermogram of another healthy patient, who had previously undergone MG, with no complaints or
symptoms but with warts on the left breast. Figure 3(c) displays a thermogram of a patient diagnosed
with breast cancer who had undergone a left breast biopsy. Similar to Figure 3(c), Figure 3(d) illustrates
a thermogram acquired from a patient diagnosed with breast cancer, who had undergone a left breast
biopsy. These images exhibit varying temperature distributions, which serve as crucial indicators in
breast thermography for breast cancer detection. The observed temperature variations among these
cases play a pivotal role in detecting and differentiating breast abnormalities, making thermography a
valuable tool in the early identification and monitoring of breast cancer.

2.2. Methodology of breast cancer detection

This paper presents a comprehensive methodology for breast cancer detection using thermal images,
employing an image enhancement-based fusion strategy with an image-dependent weighting approach.
The proposed method is designed to improve the accuracy and reliability of the breast cancer detection
system by refining the thermal images and identifying potential cancerous regions.

2.2.1. Image enhancement

The first stage of the proposed methodology involves image enhancement as a pre-processing step.
When captured, thermal images may suffer from various artifacts, noise, and low contrast, which can
impede accurate cancer detection. To overcome these challenges, we apply specific enhancement tech-
niques to improve the quality and clarity of the thermal images. The enhancement process includes
local linear and hyperbolization functions to enhance contrast and preserve over-brightness in the im-
ages. The enhanced images based on the linear and hyperbolization functions can be respectively
expressed as follows:

[Xa]m,n
i, j = min{[Ia]m,n

i, j } + (max{[Ia]m,n
i, j } −min{[Ia]m,n

i, j }) · [ca]m,n
i, j (X.1) (2.1)

[Ya]m,n
i, j = βmax{[Ia]m,n

i, j } · e
ln(1+ 1

β )·[ca]m,n
i, j (2.2)

where β represents a constant, and [ca]m,n
i, j denotes a local cumulative density function of a local image,

[Ia]m,n
i, j . Here, m and n are the size of a local block, and i and j are a pixel location of an input image,

Ii, j. In this paper, β and m, n are set as 0.0001 and 9 × 9, respectively.

2.2.2. Image fusion

The core of the proposed methodology lies in the image fusion technique, which combines the en-
hanced thermal image with complementary information to augment the detection process. The fusion
strategy is based on an image-dependent weighting approach, where different parts of the thermal im-
age are given a varying importance depending on their characteristics and relevance to breast cancer
detection. By assigning appropriate weights to different image components, the fusion process aims
to highlight potential abnormalities indicative of breast cancer. The fused image can be calculated as
follows:
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Ei, j =
Ii, j

IL−1
EH +

(
1 −

Ii, j

IL−1

)
EL (2.3)

where EH refers to an image enhanced by a local hyperbolization function, EL denotes an image en-
hanced by a local linear function, Ii, j represents an input thermal image, and IL−1 is the total number of
luminance levels of an input image, Ii, j.

2.2.3. Segmentation

The enhanced and fused thermal image is analyzed using segmentation algorithms to identify re-
gions that are suspected to be affected by breast cancer. Segmentation is a critical step that isolates
potentially cancerous areas, allowing for further evaluation and analysis. The segmentation algorithm
used in this methodology is designed to distinguish between healthy breast tissue and potentially can-
cerous abnormalities based on the local image luminance of enhanced regions. The regions identified
through segmentation are further analyzed in subsequent stages to determine their malignancy. The
segmentation process can be described as follows:

S i, j,α ⇐ R(Ei, j,T
′

i, j, ε) (2.4)

where ε is an acceptable error of segmented regions, and R is a region growing algorithm. Ei, j denotes a
fused thermal image, T

′

i, j refers to initializing regions, and α is the total number of initializing regions.
The segmentation algorithm requires the initialization of regions to segment potentially cancerous
regions based on local luminance intensities. They can be defined as follows:

T
′

i, j = Ti, j ⊗ Ma,b (2.5)

Ti, j(Ei, j ≥ µ) = 1 (X.5) (2.6)

where Ma,b represents a median filter, a and b are the size of an image filter, and µ refers to a global
threshold. In this paper, µ and a, b are set as: 0.8627 and 3×3, respectively. This segmentation process
enables the identification and isolation of potentially cancerous areas for further analysis and diagnosis.
By employing these aforementioned key steps, the breast cancer detection system aims to enhance the
accuracy and effectiveness of early detection, ultimately facilitating a timely intervention and improved
patient outcomes. The breast cancer detection algorithm is technically illustrated in Algorithm 1.

The analysis of Figure 4 reveals significant observations about the breast cancer detection system.
First, when solely employing an image enhanced by a local hyperbolization algorithm, the resultant
segmented regions appear to be continuous but notably larger. Conversely, solely employing an image
enhanced by a local linear algorithm yields segmented regions; however, certain areas are observed to
be either absent or missing. Consequently, combining enhanced images and incorporating both local
hyperbolization and local linear algorithms demonstrates a more precise depiction of cancer regions.
This enhanced image amalgamation presents a more accurate representation, mitigating the limitations
observed in the individual algorithms.
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Algorithm 1 Breast Cancer Detection
Require: Thermal image, Ii, j

Ensure: Segmented Regions, Mi, j

1: Normalize the input image:
2: I

′

i, j ←
Ii, j−min{Ii, j}

max{Ii, j}−min{Ii, j}

3: Apply Image Enhancement algorithms to the normalized image using Eqs (2.1) and (2.2).
4: Fuse the enhanced images using Eq (2.3).
5: Define the initializing regions:
6: T

′

i, j(Ei, j ≥ µ) = 1, where µ is a global threshold.
7: for α← 1 to card(T

′

i, j), where card(·) is a cardinality operator do
8: T

′

i, j = 1
9: Apply image segmentation using Eq (2.4).

10: end for
11: Combine the segmented regions:
12: Mi, j ← maxα{S i, j,α}, where S i, j,α represents the segmented regions for each α.

(a) (b) (c) (d)

Figure 4. Comparison with different preprocessing enhancement algorithms; (a) input ther-
mal image, (b) segmented regions on the image enhanced by a hyperbolization function, (c)
segmented regions on the image enhanced by a linear function, and (d) segmented regions on
the image enhanced by linear and hyperbolization functions.

3. Results

In this section, we comprehensively evaluate the breast cancer segmentation methods using visual
and statistical assessments. The aim is to assess the performance of the proposed automatic method
against the Tunable Weka trained method (automatic method), the Graph Cut manual method, and
Segment Anything by Meta AI [41]. The assessments are carried out to determine each method’s
robustness, accuracy, and efficiency in segmenting breast cancer regions. On the other hand, the de-
veloped segmentation model was subjectively compared with existing methods in the literature. The
performance of the proposed method on the DMR-IR dataset of thermal images using Accuracy, Sen-
sitivity, and Specificity metrics was compared against the aforementioned segmentation methods.

3.1. Evaluation metrics

The fundamental tool in image processing involves segmenting an image into either distinct regions
or objects. It plays a crucial role in various applications, such as medical imaging. Evaluating the
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performance of image segmentation algorithms is essential to assess their accuracy and effectiveness.
Several evaluation metrics are commonly used to measure the quality of image segmentation results.

Specific terminologies are employed to assess the performance of cancer detection algorithms
through image segmentation. The number of pixels correctly identified as cancerous is called True
Positives (TP). In contrast, the number of pixels predicted as malignant but healthy is categorized as
False Positives (FP). True Negatives (TN) represent the accurate identification of healthy pixels, and
False Negatives (FN) indicate the misclassification of cancerous pixels as healthy. In this paper, we
used three key metrics: Accuracy, Sensitivity, and Specificity.

Table 2 presents the corresponding equations and a brief description of each metric used in this
study.

Table 2. Metrics used for segmentation evaluation.

Metric Equation Description

Accuracy T P+T N
T P+FP+T N+FN

Accuracy is a primary evaluation metric that measures the overall
correctness of the segmentation results. It represents the ratio of
correctly classified pixels to the total number of pixels in an image.

Sensitivity T P
T P+FN

Sensitivity measures the proportion of actual positive pixels cor-
rectly identified as tumor-positive by the given segmentation algo-
rithm. It indicates the ability of the given algorithm to detect the
TP regions in the image accurately.

Specificity T N
T N+FP

Specificity measures the proportion of actual negative pixels cor-
rectly identified as negative by the segmentation algorithm. It indi-
cates the algorithm’s ability to accurately exclude or reject regions
that do not belong to the objects of interest.

3.2. Visual assessments

In this subsection, we present a visual comparison of the breast cancer segmentation results obtained
from three methods: the proposed one is automatic, alongside the Tunable Weka train model [42],
Graph Cut manual methods [43], and Segment Anything model by Meta AI [41, 44]. This comparison
aims to evaluate the robustness and accuracy of the proposed automatic method compared to the other
two approaches.

As can be seen from Figure 5 (third row), the segmentation results obtained from the proposed
automatic method are visually assessed and compared to the Ground Truth (GT) (second row). The
GT represents a medical professional’s expert-labeled GT segmentation, serving as the evaluation ref-
erence. Through visual inspection, it can be observed that the proposed method achieves a high level
of accuracy in delineating the boundaries of the breast cancer regions. The segmented areas closely
align with the GT, indicating that the proposed method successfully captures the essential features and
patterns of the cancerous regions.
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Figure 5. Visual BC segmentation comparison using various methods: rows 1:6 respectively
show the original BC imagery, ground truth (GT), proposed, Tunable Weka, Graph Cut, and
Meta segmentation results.

In terms of the results obtained from the Tunable Weka, this later demonstrates reasonably accu-
rate segmentation, and there are certain regions where the boundaries do not precisely match those of
the Ground Truth. Sometimes, the Tunable Weka method fails to capture fine details or may over-
segment certain areas. Furthermore, the Graph Cut, which is a manual method, achieves high accuracy
in segmentation, closely matching the GT. However, due to its manual nature, this method is time-
consuming and labor-intensive, requiring significant expertise. Additionally, the manual method may
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be prone to inter-observer variability. Moreover, The META method demonstrates quite a good perfor-
mance in segmentation, exhibiting a close alignment with the GT. However, it is important to note that
the method falls short in terms of accuracy and tends to result in dilatation during the segmentation
process. Overall, the visual assessments reveal that the proposed method outperforms both the Tun-
able Weka, Graph Cut, and META methods regarding robustness and accuracy. The proposed method
achieves results comparable to GT, while eliminating the need for labor-intensive and time-consuming
manual segmentation. These results highlight the potential of the proposed method for efficient and
reliable breast cancer segmentation.

3.3. Statistical assessments

In this section, we conduct a comparative analysis of the proposed segmentation method against
various studies, focusing on metrics such as accuracy, sensitivity, and specificity.

As shown in Table 3 the proposed method achieves the highest accuracy among the compared
studies, at 97.8%. Moreover, it shows high specificity (True Negative Rate), at 99%, matching the
performance of the study [45]. These values indicate that the proposed method can correctly identify
most of the true positives and true negatives in the dataset, which are crucial metrics for evaluating
the study quality. However, the proposed method has a lower sensitivity (True Positive Rate) than the
study [46], at 100% compared to 60%. This suggests that the proposed method may miss some of the
true positives and classify them as false negatives, affecting its reliability.

Table 3. Comparison of the proposed BC segmentation against the state-of-the-art methods.
The best results with a green bar color.

Quality metrics

Study Year Accuracy Sensitivity Specificity
ETEHADTAVAKOL et al. [13] 2010 0.800 NG NG
NICANDRO et al. [26] 2013 0.718 0.820 0.330
ARAÚJO et al. [30] 2014 NG 0.857 0.865
ACHARYA et al. [25] 2014 0.900 0.920 0.880
MILOSEVIC et al. [33] 2014 0.850 NG NG
KRAWCZYK et al. [27] 2014 0.887 0.798 0.910
ALI et al. [31] 2015 0.881 0.850 0.800
PRAMANIK et al. [47] 2016 0.900 0.950 0.850
LESSA et al. [48] 2016 0.850 0.870 0.830
SATHISH et al. [18] 2017 0.910 0.872 0.943
GOGOI et al. [49] 2017 0.875 0.950 0.800
CACCIABUE et al. [42] 2019 0.940 0.670 0.940
TAYEL et al. [45] 2020 0.960 0.970 0.970
SANCHEZ et al. [46] 2021 0.970 1.000 0.830
BAFFRA et al. [50] 2021 0.943 NG NG
Proposed 2023 0.978 0.600 0.990
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4. Discussion

Thermal imaging has emerged as a widely adopted and cost-effective tool in detecting and classi-
fying breast cancer. This paper introduces an automated segmentation tool designed for breast cancer
analysis using thermal images. Through computer simulations conducted on the DMR-IR dataset,
our proposed approach demonstrates a superior segmentation efficiency and flexibility compared to
end-to-end learning approaches and supervised and unsupervised methods. The performance of our
algorithms was evaluated using commonly employed assessment metrics such as accuracy, sensitivity,
and specificity. Furthermore, the strengths of our work lie in its ability to extract cancer regions with
reduced computational complexity, thereby enhancing its practical applicability.

The visual assessments involved comparing the segmentation results obtained from the proposed
automatic method to the GT segmentation, which represents expert-labeled annotations. Through vi-
sual inspection (Figure 5), it was observed that the proposed method achieved a high level of accuracy
in delineating the boundaries of breast cancer regions. The segmented areas closely aligned with the
GT, indicating that the proposed method successfully captured the essential features and patterns of the
cancerous areas.

Overall, the proposed method achieved results comparable to the GT, while eliminating the need for
labor-intensive and time-consuming manual segmentation. These results indicate the potential of the
proposed method for efficient and reliable breast cancer segmentation. In the statistical assessments,
we conducted a comparative analysis of the proposed segmentation method against various state-of-
the-art studies. The proposed method achieved the highest accuracy of 97.8%, indicating its ability to
correctly identify most true positives and true negatives in the dataset. However, the proposed method
had a lower sensitivity (True Positive Rate) than one of the studies, suggesting that it may miss some
true positives and classify them as false negatives, thereby affecting its reliability. Sensitivity is cru-
cial, as it indicates the ability to correctly identify true positives, thereby reducing false negatives. It
is important to note that the comparison was made against a variety of studies with different segmen-
tation approaches and datasets, which may have different complexities and characteristics. Therefore,
the proposed method’s performance, needs to be interpreted with respect to the specific dataset and
conditions used in this study.

While the proposed method showed promising results, there are some limitations to consider. The
relatively lower sensitivity indicates the need for further refinement to improve the detection of true
positives. Additionally, the proposed method’s performance may vary depending on the dataset and
imaging conditions, highlighting the need for further validation on diverse datasets.

5. Conclusions

This paper introduces an innovative approach to enhance and segment thermal breast images, aim-
ing to support radiologists in detecting breast cancer more effectively. The method focuses on in-
creasing the contrast between cancerous regions and the background while ensuring uniform intensity
levels within tumor areas. It is comprised of two stages: a local image enhancement technique based
on a hyperbolization function that adapts to image characteristics and a dedicated segmentation algo-
rithm employing an image-dependent weighting strategy for precise delineation of tumor boundaries.
Evaluation of the proposed method on the DMR-IR database demonstrates outstanding segmentation
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accuracy, sensitivity, and specificity performance, surpassing existing techniques in image quality and
tumor detection. The potential impact of the proposed method is substantial. Improving the inter-
pretation of thermogram images can facilitate early breast cancer diagnosis. Furthermore, it can em-
power physicians to make more accurate and validated breast cancer diagnoses, benefitting patients
with better-informed decisions. Integrating thermal infrared imaging and dynamic thermography into
clinical practice represents an invaluable opportunity to advance breast healthcare. By complementing
traditional imaging techniques with thermology, healthcare professionals can enhance their ability to
evaluate and diagnose breast-related conditions, ultimately offering patients proactive and personalized
care. Moreover, the method’s versatility allows its application in various biomedical imaging domains.
Looking ahead, the future direction of this research involves combining the developed segmentation
method with accurate classification techniques. This integration promises to improve further sensitiv-
ity, specificity, and overall patient outcomes in breast cancer detection and management.
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