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Abseract—Several ofl spill disasters bave been reported in the last
decarde, posing & major threat to ihe marise ecosystem, damaging
marine life, vital for profecting the enviroument, and reducing
eeonome lsses. e ovder to reduce or clean the ofl spiil, ane needs
to create a cost-effective ofl spill detection system, including s
souree, the spill extent, the qrantity estimate, the range of probahle
transport paths, and weather snd sea condifons. Thermal and

polarimetric imegery are emerging sensing modslities that show
the poteniial for enhanced contrast in sttnations where conventional
Imaging, such as microwave, and visible Imaglig,

has recently been researched. Theve is a need to existing
a

thernaal and polacimetric ireages since there is Bifle work and date
In this ares. Carrent studies bave shown some fnprovement in ol
spill technlque develupment. Bven with the sdditional

of new fechmiues, thess steps are Hmited by cloud cover and tack
dmmmmmwmm«m
camecas’ ssage for tracking 3-D ofl spills in the sea by developing
robnst ansupervised off seosing algorithoss. It nvolves introducing:
1) an oil spill segmentation framevwork designed for thermal and
polarimetric imagery; 2) a moltidensity ofl spifl reglon enbance.
mentand 3-I) ihickmess visealization algerithng and 3) a gualitative
and quentitative ofl spill analysie approach, Comparisons with
existing algorithms demonstrate ihe clfectiveness of the proposed
algorcithuas.

Index Terms—Oil density detection, ol spill, polarimetric image,
polarization, thermal imagery.

L. INTRODUCTHON

HE oceans cover spproximaely (71%) of the total sarfaos
arca of Barth and are an essential component of Barth's
ecosystena [1], [2]. With incosased mesitime taffic, sudden oil
spill disasters bave become mons common [3), (4], [5]. Similasly,
fioeting crude oil on ocean surfaces can barm mwarine and coastal

environments and fishesies (6]. According to the Buropean Space
Agency (ESA), over five million tons of oil are spilled each
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year, with at least (45%) of that due to operational dischacges
from ships. Purthenmons, oil spills are significant incidents that
have long-erm conseguences for the maritite environment (7],
Fuctheraore, ol spill dissster managemant, such as the Man-
ritivs oil spill in 2020, which spilled 1200 tons of oil into the
goean, hes far-teaching and long-term conseguences. The oil
may float op the sea suface for days or months, changing its
chemical composition due to weathering. Oil spill detection sims
o identify dack spots in images st any time, which is difficult
becanse the scathering arsas essocinied with oil spills are subject
to change due to water surface movement. Sensing oil spill data
is critical for a variety of reasons, including oil spill mapping for
tactical and strategic combermessures; gathering legal evidenos;
Inw enforcement, including ship discherge monitoring; direct
support for ol spill commtermessurss; and determining slick
trajectory 8 ]. Jt should come as no surpxiss that spilled oil canses
bydrocarbon pollution, which is toxic to all living things. Given
the importance of ecquiring datz on oil spills for proactive inter-
vention aud pollution redustion in the environment aud ecosys-
tems 9], this step pecessitates additional information reganding
the slick’s location, type, size, and thickness [3]. However,
significant progresses bave been made using cameras in visible
end. infraved specica. However, many critical data issues remain
unexploned becsuse oil has bo distinct spectral information thas
distinguishes it froms the waker in which it foats [10]. Fosthor-
more, [11] supporis this inberpretation by stating that technolo-
gies msed to defeet oil shicks rangs from Jaser floor sensors to
mricrowave sensors via optical remote sensing (vitraviolet and
oifiers).

T practice, the most widely used sod low-cost method uses
infiraed sensors to some extent for optical remote sensing. This
asticle will demonstrete the various types of thermal infrared
sensors were used to determine their potential for measuring
oil film and idetifying fuel. Oil spill monitosing technology
using infrared wavelengths, on the other bend, hes grown in
populaity because it is widely acoepted, portable, low-cost, and
ensy o use [ 2]. Bt comectly detects the thickness of an ol spill
by detecting thermal infrared emissivity, es indicated in [13).
Furiliormore, the suthors make use of spectral emissivity’s mul-
ticollinearity. The thexmal infrared emissivity properties of oil
filns can be summarined as follows: 1) the emissivity changes
Gramatically when the films are thin; 2) the emissivity varies as
oil filrn thickness incrsases; snd 3) thermal imaging information
shows blurned boundaries between the oil fibm region and a water
surfece.
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TABLE]
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COMPARISON OF CONVENTIONAL THERMAL IMAGERY AGAINST POLARIMETRIC IMAGERY

Descriptions Thermal Palorimenle
Commencial Cost [36] High Monz expensive
Image quality Relies on [B]: Relies oo [16]:
= Pocus of an infiared seasor » Rotating element of diviston of
» Opiics of a thermel imagery tirme
« Spetal resolution (pixcls + Geld » Division of amplitede and aper-
of vigw) felicd
Color conteot informstion

Recosd image through trensluceot cbatacles [33]
Visibility in low or o light [33]

Distinguish objects st verying distmces {38]
Display surfiscs sempersiures of solid objects [38]
Wrigpley surfece tempembmes of waier [16]
Presence of nolse [38]

Existing tools for 2 solid segmentation [10]
Advastagss 110

Disadvantages [10]

= Raw: gray-zosle [14]
s Enbamoed: oolor by a coloc-map
Yes

o Rew: gray-scals [37)
s EBobapced: color by 2 color-map
Yes

Yiea Yes

Mo Niy

Wes Yes

e Yes

Law — Modig Low — Modiom

Finrited Linited

Eimmited Limitzd

Reveals delsily inside regions Provides sirong regions

Blorred edges dire ho besl pedisiion Fusing opeceions sod angles of reflec-
foa

Optical polarization remote sensing, which has been need for
decades, may provide a new solution for oil spill detection. The
study shows that polashuetric sensors con exiract more visual
information. frora light polarization |1 4]. So, by bavisg one oe
mose polarimetric parsoasters | | 5], we can exiract detells fom
a scens that are not readily apparent when using convsationsl
thermal imagers alone | | 6]. Thess sisssurements huve the poten-
tal to provide polarization contrast dus to metesisl differences,
which we a0z ntilizing heve for oil-ou-water debection [16].
To digtinguish sn chject from the background, the comssmonly
used degree of linear polesization (DoLP) is odented at 0° sod
90°, and 45° and 135° (left-toright and top-to-bottom). These
measyrements, however, required large scientific instcunozuls
that wens not easily portable for bandbeld use in the pest. The
most pecent advascements in uncooled infraved sensor eteys
have resnlted in 2 significant reduction in the size, weight,
and cost of high-performance polarimetdc sensors, Chenanlt
et af. [16] demonstrated that polacimetric imaging can be an
eifiective target detection fool in complex environments by ao-
alyzing the polarization property of the light emanating from
the objects rather than the intensity [ 15]. Poletimetdc imegery
can be vsed to detect odl fikm [1 7], (18], [19]. For sxample, the
authors i [ 18] and [20] conducted laboratory expetiments o
iovestigats the poladization propectios of oil apills. Nogetheless,

their findings have yet to be validated on a satellits scale.
Thouv et al. [21] detected oil spills in sun glints based on the
degme of polesizaion using selellite images, However, only a
fiew saiellite images ere used for validation. The quality of 2
Dol_P imege is deteonined by a muwber of impoctant factors, as
strown i Teble

Fig. | degpicts the inaging chasacterstics of thermal single-
podesdizetion and polerimeiric inages. Image segmentation and
imege whancement techiigues indicate regions with varying
densities of vil fbws vsing differeot imaging properties. Foe-
Heomane, when comparsd to thermal imaging, the quality po-
Iarinsstiic imegs demonstraies fiom boundaries between oil films
gind watre susfeces, as shown in Fig. |, macked as a shaded area
fior theonal and polarmetdc imaging on the Ggure’s top and
lotomn. right.

The privsary gosl of sccessing ofl spilleges is to accurately
evaluote the off film thickuness, spill sagion, and spill density.
Theomal sod polsdmetic imaging are commonly used in oil
spill dietection due to their nuique abilities in nighitine searches
and complex weather conditions. Bowever, the used
rediation-based imagery is constrained by wind speed [ 19], [22].
% comses waves on the water’s suxface. As a resuli, the oil
spill and seawater bave 2 npiform contrast. Acconding to some
evidence, segwenting oil filon regions into bighly homogenaous
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Fig. 1.
varying depsitizs of ofl filws vsing
films and water surficss,

imaging

regions is difficult. This calls indo question the validity of both,
segmentation based on global thresholds. Following the standand
procedure for oil spill desection, this process is divided info
three stages—oontrast enhancemeont, segmentstion, and ofl spill
clagsification  10|. This research even includes contrast enhanos-
ment. Fusthermore, the shortcomings of several commoniy used
methods must be addsessed, including: 1) finding 2 vesatile
solution that can be applied to a large and constantly growing
number of different regions of intetest (RON); 2) dealing with
the vast variations in ROI properties; 3) dealing with the varioos
oil spill imege modalities [16]; 4) issues related to changes in
signal homogeneity, primarily varability and noise for each ob-
ject [ 14]. However, this study includes a detaiied segmentation,
which can be classified as manual, semaizntomatic, or Sullly auto-
matic [ 18]. The first cabegory is tivee-vonswming, soRotonous,
and can be influenced by intraobsecver or interobsecver vari-
ability. Semisutomatic methods ace widely used and widely
available. However, these technigues nocessitals ussr-coarse
initialization. Finally, fully automated proceduses do ot requins
user intervention. It necessitates the use of additional appropriabe
preprocessing algorithms, such as denoising, enhancements, and
50 on. Bach of these approaches has edvaniages snd disadvan-
isges [23]. Our focus fells into this category becanse we sirive
for ofl-spill segmentation and detection using wwsuperviged
methods.

This article focuses on developing an atomatic unsupesvised
oil spill detection approach using thermal end polarimsirc im-
ages because: 1) the presented method does not requins large
data bases o trzin the algodthm permmeters, which i3 critical for
nenral metworks; 2) it is computationally cheap with an everage
1.06 s only to run 2 sample image; and 3) it iz simple o design,
interpret, and use with low-power devices with limited memory,
computational power, and power supply, which is sometimes
more impaortant (for example, for drone imaging and JoT). The
following ere the major coniritutions.

1) We propose an efficient method for mubtilevel threshold-

ing vsing cross-zniropy.

2) We develop an image drive-optimized enhancement algo-

rithm for thermal and polarimetric images.

3} We develop a nature-inspired optimized rmuitithreshold

segmentation framework with 3-D visnalization.

Comparison of oil spill imaging (celagod arca aize: 100 x 109). (a) Theanal image aud (b) & polarimatrc itmage. Theomeal ked polarmetic images rvesl -
different peopertics, Poladmeattic imaging oufperdforns ihemnal imaping in distinonishing Sren bovndaries between ofl

4} A comparison of the advantages sod disedvanteges of
thermal and polerimetric imege performance on the same
oill spill data bases (the fixst work in this aves).

The st of this article iz organized as follows. Section |
provides a high-tevel overview of the research gap in oil spill
segmentation. Section |l elshorates on the nesearch problem. The
proposad oil spill segmwentation for thenwal and polarimetsic
images is described in Section (11, Section 1V lustrates and
discusses the computer simulztion resulis, and the final section
summasizes the advantages of the proposed method over the
state-of-the-art. Finally, Section V concludes this srtiche.

1. BACKIROUND

This section will investigete the history of thermographic
and polarimetric techrrologies. The conventional il spill sensor
appmaches arecomparsd in Table [, Mors detailed descriptions
of the benchis and drawbacks of oil spill remote sensing ar
contained iz [19]. We also examine the most cosumonly used
demonsiraie how binssization methods, both local and global,
can be nsed to classify oil spills.

A, Polarimesric imagery

Tio the 19905, researchers began lnvestigating oil spill deize-
tion usiag synibetic aperiuce rader sensors. Polarimetric imeges
Tusve gained populadty in the last decade. Prematurely, Solberg
et gl [24] based oil spill detection (OSD) on texture analysis of
single: polasimetsic images. They used & Bayesian classifier to
extract (12) testure fostunss from the dark spots of oil films. The
goladmetric synthetic aperture rader sensors can acguire many
detadls shout ihe targets by mweasuring their complex scattering
matrices, which is useful for moalyring and interpreting the
scattering mechanism of oil shicks, fook-alikes, and scawaier,
as well as realizing oil slick extraction and detectom [23].
Polarimetric imaging is one of the most effective technigues
for high-contrast imaging because it extracts visual information
from light polarization [14]. Polarimetric imagery deiection is
a young and underdeveloped field [26]. The authorsin [ 7] and
[27] proved that polarmetric SAR imagery can be used for
both spot oil sticks and distinguishing them from wesk-damping
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Feature (Proe | Cons %)

Enaging methods

Laser Polarimetic [34] Visible Themmal Microwswe (Rade)

MMM SMEN

\kkﬂkkg
MM A S M
LN |
NaNHAAN

look-glikes of images captured vuder low-to-saoderate wind
conditions and at intermediate incidence angles. Remote sens-

ing, computer sciences (object detection and classification), mi-
croscopic, planetary science, asironomy, ueilitsey, sucveillancs,

and weather radar applications are alveady using it. Jit is usefuol for
distinguishing weak target signetures from their surroundings,
uwummmbymsmgmmmm
or nonpolarimetric inneges.

B. Thermel hnegery

Not long ago, IR cameras were primarily used empirically
for oil spill detection becanss they are low-cost, lightweight,
and can detect oil spills at night. Recent studies have shown
that 1) infrared sensors con detect oil flms with (10-100 )
um fhickness; 2) the brightness of the infrarsd sensing-based
imagery Is low or during the cloud aad beavy fog for good
operation; 3) false-positive results can be obtsined by mwisin-
terpreting the theral redistion from scawezd; 4) oil spills can
be detected using some theesholding techmigues in the pear
infirered (NIR) spectoum (7501000 nm), but this iz prone to
false negatives [28); 5} crede oil hes a different reflectance
spectrum when compered to waizy in the short wave infieansd
band (10001700 nm) [291; 6) ofl spifl detection using machine
learning using a UAV JR image wider contolled conditions
and echieving 89% accuracy on 2 data set orsebed during the
experiment Thermsl remote sensing detsil reviews can also be
found in [30] and [31].

C. 0l 5pill Thermal ond Polarimetric Inogery

The concept of thermwgraphic sensots, fixst infroduced in
1936, refers to radision detection in fhe eleciromagnetic
spectrum’s long-infrared range. The amount of redistion ewitied
by a given object incteases with tempersture, wasm objects
stand out well against cooler backgrounds, which becoms easily
visible day or night. Becasse it can provide spilling information
during the day/night and work in adwerse weather conditions,
this technology enables us to detect oil spills and disester
mensgement projecis [ 10|, Despite this, the imege guality is
poor. They ave noisy, blwry, and low-resolution. Furthermore,
the thermal image contrast between oil and water is frequently
30 seall that OSD becomes problematic and difficult. Finally,
infraved {IR) caonot be used to measure shick thickness, in
general, (8. Polarimetde irvaging, onthe other hand, has distinct

advantages fot a variety of detection and classification prob-
lesas [12]. This sensor’s kight reflects directly from the surfacs,
contgiaing the most informetion on surface oil [17]. Bven so,
il in e water has a polsrizing =ffect on light, so viewing ofled
waber tvough polesized lenses may increase contrast and oil de-
iection, Fucthermoere, while advancing specific signajures selated
1o susface siocfiness, orientstion, sod target compasition [33),
the polarization of backsceiiered light is preserved. Recently,
the polarized pattems of soms animals bave influenced image
formation within their visual feids, As 2 vesuly, it is naiurzl to
adapt some of these behaviors in the world of compuser vision for
avariety of biclogically inspired applications. Polaximetric tech-
rology can producs more accuraie results on bigh-density-based
oil spill segmeniation and messurement cases than conventional
thesmzl bwaging, which can be used to clagsify the thickness
of ol flms. However, thero is evidence thet image quality is
primarily determined by angles, which result in ander-<xposed
and overexposed illuminated regions. Tables | and [1 compare
the advantages and disedventzges of thermal and polarimetric
imagery sensors.

image binarization is an buportast stkep in preprocessing,
pasticularly for data anakysis. Binarization is the process of con-
vesting grayscale or collor images isio two-tone images (black
or white regions). Binerizstion, on the other hand, preseats
unique challenges that can take many forms. The most com-
w00 tesks ip rowote sensing, however, ans object detection
and reovguition, clessificetion, and analysis. Binarization is
used to: 1) sepaaie the image inbo distinct regions containing
each pirel with similsr charactoristics; and 2) segment the
inongs. Tn pracice, thresholding is one of the moost basic and
widely used image segmentaion technigues. Tn image bina-
rization, & theeshold value is mesually selected, and all pixels
with valves grester then the threshold are classified as white,
while afl other pixels are clagsified as black. The binarzation
process is dificult due o imege noise and degradation. The
problem is declding on an eppropriste image-doiven thossh-
ohil. Nusmerous studics bave recently focused on binarization
tools (18], [35].

D. Image Binarization

However, there is no agreement on the acciwacy of the na-
sults becauss, in most cases, the sensors produce low-nesolution
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images that ars primarily noisy or blurry. Mustafa, et al. [39]
discovered a method for evaluating the shoricomings of al-
gorithms for degraded image binarzation. The authors pro-
pose a new algorithm that will improve image binarization
methods by employing a more relishble methodology. Further-
more, given the characteristics of the existing sensors, finding
a perfect oil spill imags binarizstion solution is more diffi-
cult. According to [39], available biverization methods cag
be classified inio two broad categories: binarizefion based on
global or single threshold and local binarization based on
region,

1) Global Threshold-Based Binarizotion (GTB): The gosl of
global threshold-based binarizetion (GTB) on the other hand is
to find the global threshold for the entire image and binarize
it using a single threshold. Using image-driven global charac-
tetistics parameters, a global bisarization concept divides the
image'smﬁmdymmicmgemmtwochsm.hmmph,
Otsu autometically determines the threshold valve besed on
global and between-class varance (40]. Kapur et al. [41] pro-
posed cross-eniropy-based algorithms. However, when images,
includiog thermal and polasimetric images, are contaminated
with noise of poor quality, these wethods do not guarantes
the best thresbold selection process because no spatial corre-
lation is taken into account. The GTB methods can be used
for a variety of image processing tasks, including image en-
hancement [42] and wniform-illumineted image segmentation.
In general, global methods cither lose or suppress the image’s
local vasiance, which may contsin imporant information or
conéent.

2) Local Binarizations (LB): Class divides an image into
regions whers the local theeshold is calculated, snd then eval-
vates a single theeshold using their Tocal thresholds, Because
of various types of local propesty, cutting-edge binsrization
methods work with small block tiles and local information.
Interestingly, some studies show that noisy detsils in loczl blocks
result in classifying regions. As shown jn Table (11, ths LB
methods can be applied o a wide tange of practical image-
pracessing applicationa. Niblack [43] obssrves the threshold
value using information from the local standerd deviation and
mean. The metde includes thresholds based on local information
for various target tiles, such as Feng's method [19), Bradlay's
method (44|, Sanvola’s method [45], Nick’s method [46], and
Mustafa’s method [47]. KM et al (48] recently pioneered
multiscale focal tiles by combining different local thresholds
with weights. Afier that, Oulefki et al. [ 10| expended Sauvola’s
local metric [43] to introduce the local threshold metrics for
oil spill segmentation. The resulting regions were given vasious
shapes based on the acceptable emor of the regions and the
distance between the center and the boundaries. Teble 17 shows
the main limitations of commonly used methods. This variety
of approaches: 1} bas used filters to reduce noise from the
image, but the use of the guided filter (best edge-preserving
filter) has not been found, which is a facior that can incraase
the accuracy of the available binarization methods; and 2) con-
trast enhancement is done either by traditional mathods or not.
More research on preprocsssing is required and warrants fucther
investigation.

HI. PROPOSED METHOD
This section proposes a high-density cil spill segmentation
frameworkbased on thermal and polarimetric images using local
threshold scgmentation. The proposed framework’s significant
steps ace: 1) peglon initialization by identifying the initial regions
of the oil spill; end 2) oil spill segwentetion by creating g
multithreshold using the PSO method,

A. Region Initializaiion

We divide the segrentation framework into thres major steps
to identify the initial regions of the oil spill, followed by asso-
ciation operators. The opessiors provide information about the
oil spill's segmented areas.

1) Multithreshold Determination Using the Particle Swarm
Optimization (PSQ): In this section, we present the determing-
tion of threshold nummbers using PSO for calculating a threshold
consizot. The PSO algorithm simply uses the objsctive function
i evaluste the candidate number of thiesholds. For sach kth
iteration, the position of the threshold (1) is denoted by =,
Threshold (8} moves in the space sccording to its velacity (vF).
The position of each threshold is updated by

ZhH = g L g, @0

Threshold position 25" is the updated vession of the last local
best position plus dweshold’s velocity. It is estimated by five
scceleration parameters (cy, ez, iy, 13, w) of the Iast velocity and
s the optimization procsss aad is updated using the following:

vet =wif +era(pf - 2F) +om(gf —2f) (D)

whete pf and gf ropresent the locel best position and the global
best position of the thresbold (£) et the k™ iteration. The learning
factors (¢, cz) control the local best position’s relative impact
and the global best part on 2 threshold’s welocity. A small number
of Jeaming factors alflow each threshold to move far away from
already uncoversd satisfactory locations. A large number of the
leaming factors stimuleie o more inbznsive ssarch of . Jocation
close to satisfackory locations. The social factors (ry, ry) ensure
that the slgorithm s rondomly determined whersas ry and ry
belong to [0,1]. An inertia weight factor is represenied by o,
which controls the search performance in bath global snd local
positions. The small number of inertia wiight increases the local
search performance, and the langs mumber encourages global
seanch performence.

Algorithm | describes all the steps of the modified PSO
searchalgorithm. It initializes the threshold (£) or multithreshold
(tn) position first, then runs the slgorithm to find the global
best threshold position. In each iteration, the Iocsl and global
best vectors are updsied to estimate the velocity vector of
cach threshold. This process is itsratively calculated until the
stopping condition is found. In this axticle, we used the corre-
lation mumber G(I,m Ji,3) of a logadithmic image (Ii'j) and a
threshold-segmented image (J; ;). It can be calculated by

Ollss o Fig Yo Ni Log =\ ( Ly —pig
{*d: 41:}_N__1M_lz o7 o7

i=1 4=1
(12)
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TABLEI
COMPARIZON OF DIFFERENT LOCAL TERIZEOLD SEGMENTIION MeTsone

Methad Theeshold Description Parameter
Feag et ol [29] p Meually en iogut
o
i}Aj:Pi,j{l—ﬂ}'uLg!!{W,j"ftmm}l\ﬁ:)"!'&’ifmm €3] ol
pa 5= o loval mem, oy,2 = o loced stdand dovintivn, o = & S00TCRA, [wen = o wrindomen 4 e
nulrer of grayscale kevels, B, = the dypamic range of gayscale staedied devistion,
Bradiay ot sl [44) £ Meepelly  imput
s (1- ) @
100
4,5 = alocal meen, sed ke constent, by dofiwls k=12,
Liedtatien: Minsainstion peoblem
Semvels o al. {45) Maenoally  input
nd.zm,j(lwk(lw%‘)) )

fe,; = 1 locsl moma,o; ; = o local stenderd! devistion, & = o conmiag?, by defemlt k = 0.1, med
R = a gay-scale lowd, by dofanlt R = 123 for s 80k Iwege. Lieitadions When tie conpest
betvmen the foreground wed fhe beckpround is smell, missing low-contrest ofyjeds, focping hucmred
wart e it is, Rendfing bedly wirious ohjoct sins, spatiel chisct intedinnss,
MWick e sl [45] Meamally  inpmt

Toj=pes+h E“;—”}—"‘) (&  pammeters

5,7 = o tocal wew, ;5 = o inesge, N ==the sive of an imege, and b = o cooseot, by defeult

F—-913.
Lépdntion: if the ounftyart #s o0 swedl of 6 text is i thin poo strolm o,
Mustso o ol (€T} s 3 ¥ gt
I 1 S __ g
Ty = 3 [“ k(l 3)] @ pemmens
{z, ¥} = the mexdimon measity of ax nput imwegs, & = 2 global meen, oy ; = a locell stendand
devimtion, & = & covetest, sod = a gray-soale Jovsd, by defimit F=128 foc mn 8l vege.
Sos =t ol, [40] Mpawally  dagut
Tog = tpg (14 G8) +n )]
F=vlyytong(L-+) Q]
== weight, 11 mody = the inteasity chemsciedotios of s ingat fimaes (J 5], pes = A Joosd
mamn, O = n constuet, and oz ¢ = jocad 3.
Ouledid et &L, [30] Moaually  fgpet
o
=e(2- o) .
i = o global mesn hmspewee mumber, o = o globs] suadsell devistion wanbon, £ = the totd
hemisames Jovd, sod o = A oopsiant,
Proposed Aurometic
. o 2 Ns,,:-l-me;j——RNqu i
= 4 —
R ud T L{m—1) ® Imtgs-Depondent
! Thooehold

whowe Ny repossests A pooweled ipango. £ mpnmcws m optimsl dmoshold coostent, D 5
peprescatn a denndsnd Image, i mprsctss e sios of A muli-treshold, tnd L moprescss o grapsonls
oved, by deBait £=178 for aa 8-bit fwege,

whers g end o7 reprosent the mesn and the stendsod de- The threghold-segmentation method is one of the most com-
viation of a logadthmic twage (I ;). ps mod o; mpressnt  mon methods for the scgmentation of images into bilevel or
the meen and the stamderd devistion of a thmsbold-scgmented  more levels. X i 2 simple aod popular method in the digital
image (Ji;), mespoctively. IV and M avc the sizes of an  jmsege processing field. Bilevel thwoshold methods encourage
imags, binzrization, 2ud fhe rosult afier segmentation is 2 vinary iwage.
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TABLE IV
POLARIMETRIC-BASED [MATES CREATED BY THE SENSOR WITH THE SEECTFICATION [33

Detector Unconled Vox Microbelomefer army
Wavebsnd (microns) 7.5-135

Pixel pitch (microus) 17

Resolation 400 % 300

Resolution G40n 512

Frame vate (Hz) 7.5 or 30 Hz

Full feme pixel opembility 99.9%

Tinags producia Radiance, 81, 32, DolP, Orentstion, Calofose, 14-bit mw
Scasitive magerial Vinedivm

Typical NETD {(mil) Lesa fhom 30

Power coonmption (W)  Lass than 250

Welght (gouns) Eess then 15

Opemting werpeminm —4°C ~ +85°0

Algorithm 1: Find the Number of Thresholds Using PSO.

Rapui: Injtialize multi-threshold (£,), inertia weight (), and stop condition C (i3, Je2), Ieatming
factors (01, 0z), each theeshold position and velocity rasdomly

Resd an bmege (Xgy)

+ Map the input image into a logasithumic domsin, I = log Xy, + 1)

a fox alf threshold positions do
2 | for clf input maiming threshold seis do
» Apply input training threshold seis to the inpue imege

Replace the meen gumbet into sach separated rogion.
Calculate 2 cowelstion sumber C (1, Jiy)
Update a comtlation mumbes
i Correfasion nsanber > Eocal besz yalue thea
| Update 2 local best value and & locsl best vector
else
| Tncrease the mwmber of thresholds
florr AN threshold pesitions do
i Updsate a global best o the mexinsm comelation mumber
Update o globel vecior
Update a threshold velocity voctor
Update a thresbold position vector

" B N o a o

Calculate fho tmeon number of regions, separated by tmining threshold sets

" mmmmdmiﬂmwmaﬂfsgmmﬂﬁ)

12 m&xmm@}

Multilevel threshold methods are a low-computational com-
plexity. It is suitable for multilevel segroentation, but & major
drawback is determining the numbser of thresholds. In this article,
the number and position of thresholds are vsed to calculate 2
threshold constant. It can be used for local ssgmentation and
will be described in the next subsection. For the calculation of
a threshold-segmented image, it can be computed by

F il 0<hy<ty
'ﬁgzﬁ,@ﬂ Lt S by <ty
et Bt
it hgta<hy<b-1

13

whese £, nepreseats the multilevel threshold position, L repre-
sents the total number of a permitted intensity range. N rep-
regents the total number of pixels in sach multilevel threshold
segmontaiion snd I'; ;) denotes an input image.

2} Calcwlation of an Optimal Threshold: Binarization meth-
ods are commonly used for image segmentation. By a global
threshold, the classicel binarization methed suffecs from intri-
cais details, which contain foregronnd details close to back-
ground details. Sauvola’s binarization method [45] for doc-
ument images has some advantages. it works well on noisy
and biurry images. Also, it is low-computational, However, it
suffers from several limitations liks low-contrast, texiure textsor
regions, spatial object interference, forinstance [45], [49]. Inthis
subsection, we are considering the calculation of an optimal
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Algoritiun 2: The Initialization of Oil Spill Regions.

Impnt: Threshold-segmented ieage (J;), optivoal threshold comsmnt (2a), the sice of the

ultileve] threshold {(n)
19 Oenerate the size of & filier, m=2n 4 1.
Generats a filter sizing m — by —m

Geneate 2 denoised image (D) by sprlying e flter o the sopmented image (F;)

Genetste & normalized image, Ni; = Iy ;/m?
14 ESQ#UM

s | Calovlate the local threshold metrc (Ti,) by vsing the optimal thresbold constant (se)

1 glse
| Define the local tiresbold metric, 735 = Nig

w Generaps initislized oil spill regions by bivsnzing the segmested image (J;) with the local

threshold metsic (73,)
Outpoi: Tnitisl ofl spill tegion metric (5 ;)

Algorithum 3: Oil Spill Ssgmentation,

Tapat: logarithmic image (1), initial oil spill region metde (By;)

10 Jnltlaline: Cost Function (CF =0)
Candinality of Region, R = cord { B}

» while CF < @ set point (k) de

# whille p, <1 g0

= Caloulate [Nygl, = Negl +on (Vi g-s]y Foms [Meagly - ome [V ], e

Ves} = (Vs € By,
rephtesits 4 binacy weight,
= Update a local meem (4] of Vi),
i Updeie n, pmnsald

a | Calenlate a OF munber

Oaigiits Segmenied inage — off spilf regfons, (Vi)

Ti.7}, mvepresents the onder nusber of tegions B; ;. o

threshold reganding thevmat aod polarimeitlc imags scpments-
Hon.

Algorithm | describes the initialization of ol spill regions by
using an optimal threshold. Tn cach Horation #, the soulitlevel
threshold is shified to the next level threshold, then calculate the
optimal threshold (Ss) until the stopping criteria (S, > k) ane
et in the end of a threshold (2,). For the calculation of the
optimal threshold, it con be writien as

cord{fy; | By < ta}

= L 14
o= tdlloy | Tog > ta) (4

whees card{ » } pypresents 8 candinslity operstor.

3) Initialization of Ol Spill Regions: T this section, we sre
defining initialized oil spill regions. The region initialization
requires dividing the entivs image into small tiles, then calcu-
lating a local threshold metric. In this case, the local threshold
binarization method is suitable for the local region segmentation.
However, it reguires modifying some calcalations for oil spdll
segmentation as shovwn in Algorithm 2,

Take note that (11) contains somwe Smvola's parameters [43],
[47], [49], if N; ; represents A mean nwmber, s, represents a
usec-defined constant, L{m — 1) represents 2 gray level con-
stant, and 2(IV; ; + mNT; — 2 ;D 517 represents 8 stan-
dard deviation murobet The local dweshold sostric is wsad to
binatize a sheeshold-segmented mage (Ji ). Yuitial oil spill

regions (B ;) can be conditionally binacized as

_ L > Ty
Bg = {0, Jig < Toy

(15}
whers Ji ¢ repoezsenis a thweshold-segmented image and 75
represents a Jocal threshold metsic. The calcalation of this is
presenied on the last Kne of Table 111,

B. 04l Spill Segmentation

In this section, the spproach to oil spill region segmentation
considess the mrnounding pixels of initial oil spill regions (B, ;)
and calcnllates the swomunding pixels, if those surrounding pixels
contain an intsusity close to initial oil spill regions, they can
be added to the same region. For a techmical description, it is
degcoribed in Algorithm 3.

C. Cost Funciion (CF)

Acost function mesmres the sccuracy of the segmented imege
oomparsd with the ground twih. In this article, we proposed the
segmentation Srarnework for an ol spil! spplication. &t requines 2
special cost function. The segmentation optimization processes
cam stop processing whea the acouracy ig close to the groomd
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| CALCULATE OPTIMAL NUMBERS OF THRESHOLD
| CALCULATE AN OPFTIMALLY LOCAL THRESHOLD
METRIC USING THE OPTIMAL NUMBERS OF
| THRESHOLD
v
I BINARIZE THE INPUTTED IMAGE USING THE
I OPTIMALLY LOCAL TERESHOLD METRIC
b
I GENERATE A BINARIZED IMAGE AS INITIAL
| REGIONS
[
| TAKE AN INITIAL REGION (s)
I } -
I CALCULATE SURROUNDING COMBINE THE CURREN? s
| | INTENSITIES [Nyl REGION WITH THE (@)
T PREVIOUS REGION o
| CALCULATE THE MEAN OF A v =
| CALCULATE THE Z
NUMBER OF A COST i
| FUNCTION (CK) =
| y =
| CONSIDER THE NEXT -
REGION o
| ADD THE SURROUNDING ' T
' INTENSKTIES INTO THE LOCAL =
REGION -
l )
| Lmrmom SPILL
REGIONS
|

TR D iy e, (m, (| o— i — —-— po— S— i ——  — p—  —  {—

Fig. 2, Pipeline of the proposed ofl spill detoction.

truth (30, The details of ground truth ssgmentation be found  respectively. It can be calonlated as

n[31].

LC‘I.X;;,;.', }fgt_.;, ang G{J bammglnalmage,aseglmmd MY
image, and ground truth, respectively. The cost function is Bs= Y {BME¥Y¥;; =1} an
intruded as the combivation of the ratic of region size (04) =11
and the ratio of region defails (o). The cost function can be gmx]:"jx“ | - !_'7:;’“
; EME; ; = o] -
described as B [Im}::?h F ot :r;,
Ag Eg [Ims:]?"n = Efm‘-ﬂ}?“!“ +1
CF=—""e— (15} oo, IR ... SR {
A" Eo e (Ifmll‘,‘;" el 1) 9

where A, and Aj, respectively, denote the size of segmented  Where [Ippe ii represenis a local maximum intensity,
and ground truth regions; A, =cord{Y;; |¥Y;; =1} and Uinenliy " Tepresents a local minimum intensity, m and n repre-
Ag = cord{Gy; | YG; ; =1}, E, and Eg represent the en-  sent the size of a hocal tile, 4 and 7 reprosent the pixel location
hancement value related to segmented and ground troth regions,  of an original image, card{ » } represents a cardinality operator,
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Resolnilon in

Data N" Type of Images Images N°  Equipment Sample
Pinels
1 Thermal 300 = 100 496 FLIR
2 Thesmal 300 x> 100 323 FLIE.
3 Polarimeidc 300 = 100 12 Fofsds
4 Polarimelric 300 = 160 109 Polaris

Fig. 3. Data set description.

and B M E, ; represents the enhancensnt neetxic by eniropy [ 52,
[53], [54], To recep this section, Fig. 2 describes the methodol-
ogy ihat has been developed. Tt gives insight into how the pegion
segmentation is calenlsied and inidated,

TV, COMPUTER SIMULATION RESULTS

The expesimental results of the proposed oil spill segmenta-
tion process ars presented in this saction. To begin, the proposed
achisves culting-adge resulis oo an oil spill data set in both
thermal snd polsrization-besed imaging. Second, we show ihe
3-D visnalization and the deteciod oif spill regicn. A

A. Dasa Sei Descriptiong and Algorithne Configurations

We bave ceated fonr publicly avedlable fhervsl snd polas-
moetcl ofl spill inonge dega sets [47). Those data sets contela
several hondred imsges captued by $heomal and poladmeisc
semsors. The dats sefs descriptions ave descrdbed in Fig. 1.

Al expedmsnts ane conducted on a0 iMac with 2 3.30-GHz
Intel CPU, AMD Readon B9 M290 graphicsl processing unit
(GPU), and 8 GB of RAM. We bave szt the laming facior
of 1 =2 and ¢a = 2, the insia weight of w =75, md the
st points o Algorithims (2 aed 3) of & = 0.90 and & = 0.85,
respectively. The constant munbers of comparsd msthods wers
set indopendently, and the best resulis weee selected for each
method. The primary condition sdapted was to sea if the oil
spill region was detected, sod the cost fuschion mumber was
close to the ground tmth, In the classical P3O algorithus, ¢
represents a cognitive constant, ¢; denotes a social constant,
and w rofies to an inertial factor. Thess paramelers e used as
mainly controlling perameters. If ¢ is set a8 @, the particle bas
no cognitive ability, if ¢z is set a8 0, thers are no shared details
between particles. In conixast, avelatively high value of the social
and coguitive components way kead particles to rush prematursly
toward the optizoal arsa. Mach research bhes suggested setting
either of the acceleration coefficients at 2 to make the mrean of
both stochastic factors, For the w-paramter, if w is set 23 0, the
yelocity of a particls dependy on ity cumreut position. Ifw > 0,
the particle tends to explote new spacs. We have set w = 3

fo roducs the tiue complexity in segmenting processes. The last
parameter, &, 18 5ot o exit the oil spill segmentation. If £ = 0.85,
the: segmentation pecformance roust be more than 85%. Testing
ihe proposed segmznistion with the PSO elgoriihm trades off
between the ssgmeniation performancs end tioe complexity. For
ts = 0.85 ~ 0.90, the reeults can be {lusixated in a while. The
proposed quakitative perfonmancs (vienal assessment), as shown
i Fig. 5 outperfonms the staps-of-the-art segmentation methods.

B. 0 Spill Segrtwnpotion on Thernaef ond Polerimetric
Digiiz Sets

This section will begin by outlining a visvelly comperstive
avglusiion, ss shown in Fig. 4. The moost advanced segentation
methods depict the ol spifl reglons, but the msulis ste inacourate
and contsin a kot of backeround aoise. Thess methods pesform
poody in separafing considered oil spill regions. This is not
the cags with the propossd neethod; the proposed segmentation
images include oil spilf mgions but mo noisy background in-
formation. The oif spill mones avs well-defined and separated.
We will nse the polatimetric images genexated by the sensor
described in [55], Table [V preswois a detailled specification of
the polatimsiric sensor used in this study, including the sensor’s
spatial resclution, operating freguency, and poladmetric mode.

1) Multidensity O Spill Segmentation and 3-I Visualiza-
fion: According to the illusivative ol spill ssgmentation re-
sufts in Fig. 5, all optimized regions can be reconstrucied as
multidensity segmented regions. Hence, we conducted the ini-
tialization by using the Gt slice ;. Thus, all-region mumbers
gradually grow based on the set point of an sccepiable segments-
tion exvor. When the error incrament, the optirization generates
more and more shices until it reaches the st point, The last slice
partially contains the lowest odl apiil density region becanse its
region emoris close to its region sei point. On the other hand, the
firsi slics partially provides the highest oil spill density region
due to itz least region exror.

‘The last columm of Hig. <+ shows ths averags sxecution tine.
Fox the paraneiens wed, each method's expected excontion time
is worse. In contrast, the proposed algorithm pedforms beiter, in
teroos of compuiational thme, This proves that this new paradigra
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Thermal Inangery

| m—

Fig. 4. Compaison of existing sepmeniation weibods viseally md by svemges execition e,

of spill detection is capeble of a reduction of energy consusmption
and completion time,

Fig. 5 depicts a visual representstion of the proposed resulis
using thermal and polarimeiric synthetic speturs radar (Pol-
SAR) images. Because traditional thermal imagery depicts an
oil spill based on refiected and emitted heat radiation, it is simple
to reveal various oil spill demsities on the water surface, ss
shown in Fig. 5. Another sagle-based thermal image, known as
polarimetric thermal imagery, dopicied oil spill regions on grid
polarizes and was aligned ot 0°, 43°, 90°, and 135° and projected
on a vertical and horizontal plane. Mathematical operations are
used to complets the caloulation of 2 Pol-SAR image. An image
depicts vital regions with narow visual huminance levels, but
some detsils within radisted sreas may be washed out. It irades
off between region cormection and region details. Therefore,
using Pol-SAR imagery to generats a multidensity image is

mare complicsted than . classical thesmal image, 25 presented in
Fig. 5(b) Pol-SAR.

2} Alegrnative  Polarimetric  Image {(Thermal-to-Psend-
opolarimetric): Tocreasing the Jocel contrast of theomal images
is amother option for converting them to polarinwetric images.
L creates 2 strong bowndery beiween regions while also
emphasizing local detsils. It is an escellent choice for oil spill
apphications that require polatimetric imaging. This section
employs remote sensing enhancement algorithms to convert
thermal images into pseudopolarimetric images (56, [57).

Fig. 6 shows a comparison of a conventional thermal image
and iis enbanced image. The improved thermal image includes
a critical edge feature, similac to a polarimetric image. The 3-D
wepresentation confirms the sherp distinction between ol and
nonoil regions. Jt also provides locs! information for both oil
spill and novoil spill ancas. Some low-density arcas, however,
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(0) Pol-SAR. images

Mulbidemity sepmentatios apd 3-1 wsusiiteebion vsing the proposed stpwesteion on thermel and polarimetde Bvesgea,

TARLE Y
COMPARING THE PROPOFED SREMENTATION ParFORMANCE Wita STATs-0F- TRE-ART BRGVENTATION Murgons; THR BasT
Ruses EhesLacHTRD Wits Ren Cotos

Quaadliy metiics
Sepmentaiion Metheds | Arurscy  Geslisily Flmews  Podden MOC D Jeooed  Spedicie
Propused f as 099 095 L a6 035 B 065
Culefid [10] o 015 021 08 0ld 021 014 w31
Bradlay [44] 076 03 083 0.85 01 08 07 0.7
Feng [39] a7 093 085 0.8 o 086 075 o0
Miustafe [47] o [ 085 0.0 00 085 0T ool
ek [45] o 007 [T [ ez 0 01 0zt
Snuvela [43] 050 on 0.09 nes oM ol o o4

favs been abandoned. The polarimetde altomatives reveal high-
density oil spill regioss.
C. Quonsitoiive Assesmnenis

The compatson with nelevant approaches would be wnfair
due 1o the lack of general approsches, 58 no corrent method
approaches the oil spill segmentation in the same way. Noncthe-
less, we used the socuracy, scositivity, F-measure (F-M), pre-
cision, specificity, MICC, Dice, and Jfaccerd io engore that the
model maiched the data. More information on segmentation
performancs metvics is contained in [30]. In ovr case, Teble V

companes the proposed methods against Oulefli [ 0], Beng | 19],
Bradisy (44|, Saavola [45], Mick [46], and Mustafe [47] over
thermal and polarimetric imagery data sets. The table depicis
e distribution probebility of the deia st various values.

The betier the segmentation performance ilinsirates, the
higher the valves obtsined for accuracy, sensitivity, F-Measore,
precision, MCC, Dics, faccand, and specificity. Excegt for the
accuracy and specificity metrics, whers Oulefid segmentation
approaches ovtperfirm the proposed one, the proposed approach
provides higher values of semsitivity, Fomeasurs, pracision,
MCC, Dice, snd Jaccand metrics than stade-of-the-ant methods.
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Original Thermal Images

o

Fig.6. Comparisonofa ﬂmﬁwﬂﬂhnwwmmﬂmﬂm g isnagges; Geovnnd colimn) multideodsy sesontafion: (Hind coluinn)
Inguited images in a 3-0 plane; (Fourtls ool proposed segmenistion in & 3-ID plame.

V. Concrusion

Ol spill surveillance constitutes an essential component of oil
spill disusier management since it can bappen during ofl trans-
portation ot storage and can be highly dangerous since wind,
waves, and currents can scatier a lagge oil spill over a wide snoe
within a fiew hours in the open sea. A study ilusirated that 2475
spills relessed over BOO D00 liters of ofl in Toromte and swroumnd-
ing regions between 1988 and 2000. This aticle inttoduced &
new oll spill detection and visvalization approach using thexmal
and polacimettic images for meritime applications. The apphi-
cation’s novelty relies on: 1) the fiact that the proposed method
reveals oil spill regions while no hirman-provided parsmeters sre
initially required; 2) offering an efficient method for nubilevel
thresholding by using the minimum cross-entropy; 3) 2 naturs-
with a 3-D visualization of the rmltidensity ofl spill method;
4) creating an image drive-optimized enbancement algorithim
applicable to both thermal and polarimetric images; and
5) offering simulation resuits for better vaderstanding of the
strengths and lmitations of ol spill detection using thermal and
polarimetric sensors images, which may belp to improve the wee
of these sensors for protecting the environment wnd reducing
economic losses and contingency planning. The proposed al-
gorithm dramatically improves the detection of vaous types of
weathered oil spills on the ocean sutface, significantly advancing
the current state of the practice with accuracy. The results show
that the proposed solution could be used to detoct oil filis on
the water surface. The proposed method illustrates the oil-spill
detection performance. The effectiveniess of the proposed ofl

spill seginentation snd visvalization method wes evabugted on
two types of date—thermal aod polatimeiic data sets, The
statistical asseestment is detenmined wsing accuracy, sengitivity,
F-measure, precision, specificity, Matbew comelation cosficient
(MCC), Dive, and Jaccard, respectively: 0.91; 0.98; 0.95; 0.92;
0.69;0.35;0.9; 0.65. A long-toom gosl is o develop a day/night
bt transfor model o detormine oil spill duckness, We plan to
progose on algoddum combining the developed method with the
deep leaming approach to clessify varions types of westhersd oil
with the presented method, may permit oil spill responders to
measure ol spill thickness with existing, commercially available
thermal radiomensic canesss and has great potential for randtiple
applicetions in vusitime surveillance.
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